H. Fan, Jingxia Wang, Pingping Wu, Lei Zheng, J. Xiang, Hongliang Liu, B. Han, Lei Jiang
{"title":"疏水离子液体将疏水碳调整为超两亲性以降低液-液催化体系中的扩散阻力","authors":"H. Fan, Jingxia Wang, Pingping Wu, Lei Zheng, J. Xiang, Hongliang Liu, B. Han, Lei Jiang","doi":"10.2139/ssrn.3726141","DOIUrl":null,"url":null,"abstract":"Summary Designing superwettable surfaces for enhancing the reaction efficiencies has been being attracted attention. Herein, we report a distinct strategy that hydrophobic bis((trifluoromethyl)sulfonyl)imide (NTf2)-based ionic liquids can endow hydrophobic carbon with superhydrophilicity and superoleophilicity simultaneously via a one-step method in a large scale. Wettability mechanisms demonstrate that superhydrophilicity of the as-prepared carbon is mainly attributed to pyridinic N-oxide from the thermolysis of the NTf2 anion, whereas superoleophilicity of the carbon is provided by the elements C and F. Furthermore, superamphiphilic carbon can greatly eliminate the diffusion resistance thereby enhancing the reaction efficiencies in liquid-liquid systems by rapid enrichment of reactants around catalysts and increasing phase interfacial areas. This work provides a general route to construct superamphiphilic carbon that can greatly enhance the reaction efficiencies.","PeriodicalId":382867,"journal":{"name":"BioRN: Bio-Inspired Engineering (Topic)","volume":"145 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Hydrophobic Ionic Liquid Tuning Hydrophobic Carbon to Superamphiphilicity for Reducing Diffusion Resistance in Liquid-Liquid Catalysis Systems\",\"authors\":\"H. Fan, Jingxia Wang, Pingping Wu, Lei Zheng, J. Xiang, Hongliang Liu, B. Han, Lei Jiang\",\"doi\":\"10.2139/ssrn.3726141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Designing superwettable surfaces for enhancing the reaction efficiencies has been being attracted attention. Herein, we report a distinct strategy that hydrophobic bis((trifluoromethyl)sulfonyl)imide (NTf2)-based ionic liquids can endow hydrophobic carbon with superhydrophilicity and superoleophilicity simultaneously via a one-step method in a large scale. Wettability mechanisms demonstrate that superhydrophilicity of the as-prepared carbon is mainly attributed to pyridinic N-oxide from the thermolysis of the NTf2 anion, whereas superoleophilicity of the carbon is provided by the elements C and F. Furthermore, superamphiphilic carbon can greatly eliminate the diffusion resistance thereby enhancing the reaction efficiencies in liquid-liquid systems by rapid enrichment of reactants around catalysts and increasing phase interfacial areas. This work provides a general route to construct superamphiphilic carbon that can greatly enhance the reaction efficiencies.\",\"PeriodicalId\":382867,\"journal\":{\"name\":\"BioRN: Bio-Inspired Engineering (Topic)\",\"volume\":\"145 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioRN: Bio-Inspired Engineering (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3726141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioRN: Bio-Inspired Engineering (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3726141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrophobic Ionic Liquid Tuning Hydrophobic Carbon to Superamphiphilicity for Reducing Diffusion Resistance in Liquid-Liquid Catalysis Systems
Summary Designing superwettable surfaces for enhancing the reaction efficiencies has been being attracted attention. Herein, we report a distinct strategy that hydrophobic bis((trifluoromethyl)sulfonyl)imide (NTf2)-based ionic liquids can endow hydrophobic carbon with superhydrophilicity and superoleophilicity simultaneously via a one-step method in a large scale. Wettability mechanisms demonstrate that superhydrophilicity of the as-prepared carbon is mainly attributed to pyridinic N-oxide from the thermolysis of the NTf2 anion, whereas superoleophilicity of the carbon is provided by the elements C and F. Furthermore, superamphiphilic carbon can greatly eliminate the diffusion resistance thereby enhancing the reaction efficiencies in liquid-liquid systems by rapid enrichment of reactants around catalysts and increasing phase interfacial areas. This work provides a general route to construct superamphiphilic carbon that can greatly enhance the reaction efficiencies.