一类神经模糊学习算法的一些性质

Yan Shi, M. Mizumoto
{"title":"一类神经模糊学习算法的一些性质","authors":"Yan Shi, M. Mizumoto","doi":"10.1109/ICIMA.2004.1384212","DOIUrl":null,"url":null,"abstract":"In this paper, we try to analyze two kind; of conventional neuro-fuzzy learning algorithms, which are widely used in recent fuzzy applications for tuning fuzzy rules, and give a summarization of their properties. Some of these properties show that uses of the conventional neuro-fuzzy learning algorithms are sometimes dillicult or inconvenient for constructing an optimal fuzzy system model in practical fuzzy applications.","PeriodicalId":375056,"journal":{"name":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some properties on a class of neuro-fuzzy learning algorithms\",\"authors\":\"Yan Shi, M. Mizumoto\",\"doi\":\"10.1109/ICIMA.2004.1384212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we try to analyze two kind; of conventional neuro-fuzzy learning algorithms, which are widely used in recent fuzzy applications for tuning fuzzy rules, and give a summarization of their properties. Some of these properties show that uses of the conventional neuro-fuzzy learning algorithms are sometimes dillicult or inconvenient for constructing an optimal fuzzy system model in practical fuzzy applications.\",\"PeriodicalId\":375056,\"journal\":{\"name\":\"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMA.2004.1384212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMA.2004.1384212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们试图分析两种;对近年来在模糊应用中广泛应用的传统神经模糊学习算法进行了模糊规则的整定,并对其性质进行了总结。这些性质表明,在实际的模糊应用中,使用传统的神经模糊学习算法有时很难或不方便构建最优模糊系统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some properties on a class of neuro-fuzzy learning algorithms
In this paper, we try to analyze two kind; of conventional neuro-fuzzy learning algorithms, which are widely used in recent fuzzy applications for tuning fuzzy rules, and give a summarization of their properties. Some of these properties show that uses of the conventional neuro-fuzzy learning algorithms are sometimes dillicult or inconvenient for constructing an optimal fuzzy system model in practical fuzzy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信