使用层次隐马尔可夫模型适应上下文变化的建议

Mehdi Hosseinzadeh Aghdam, N. Hariri, B. Mobasher, R. Burke
{"title":"使用层次隐马尔可夫模型适应上下文变化的建议","authors":"Mehdi Hosseinzadeh Aghdam, N. Hariri, B. Mobasher, R. Burke","doi":"10.1145/2792838.2799684","DOIUrl":null,"url":null,"abstract":"Recommender systems help users find items of interest by tailoring their recommendations to users' personal preferences. The utility of an item for a user, however, may vary greatly depending on that user's specific situation or the context in which the item is used. Without considering these changes in preferences, the recommendations may match the general preferences of a user, but they may have small value for the user in his/her current situation. In this paper, we introduce a hierarchical hidden Markov model for capturing changes in user's preferences. Using a user's feedback sequence on items, we model the user as a hierarchical hidden Markov process and the current context of the user as a hidden variable in this model. For a given user, our model is used to infer the maximum likelihood sequence of transitions between contextual states and to predict the probability distribution for the context of the next action. The predicted context is then used to generate recommendations. Our evaluation results using Last.fm music playlist data, indicate that this approach achieves significantly better performance in terms of accuracy and diversity compared to baseline methods.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Adapting Recommendations to Contextual Changes Using Hierarchical Hidden Markov Models\",\"authors\":\"Mehdi Hosseinzadeh Aghdam, N. Hariri, B. Mobasher, R. Burke\",\"doi\":\"10.1145/2792838.2799684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems help users find items of interest by tailoring their recommendations to users' personal preferences. The utility of an item for a user, however, may vary greatly depending on that user's specific situation or the context in which the item is used. Without considering these changes in preferences, the recommendations may match the general preferences of a user, but they may have small value for the user in his/her current situation. In this paper, we introduce a hierarchical hidden Markov model for capturing changes in user's preferences. Using a user's feedback sequence on items, we model the user as a hierarchical hidden Markov process and the current context of the user as a hidden variable in this model. For a given user, our model is used to infer the maximum likelihood sequence of transitions between contextual states and to predict the probability distribution for the context of the next action. The predicted context is then used to generate recommendations. Our evaluation results using Last.fm music playlist data, indicate that this approach achieves significantly better performance in terms of accuracy and diversity compared to baseline methods.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2799684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2799684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

推荐系统通过根据用户的个人喜好定制推荐,帮助用户找到感兴趣的项目。然而,物品对用户的效用可能会因用户的具体情况或使用物品的上下文而有很大差异。如果不考虑这些偏好的变化,这些建议可能与用户的一般偏好相匹配,但对于用户当前的情况来说,它们可能没有什么价值。在本文中,我们引入了一个层次隐马尔可夫模型来捕捉用户偏好的变化。使用用户对项目的反馈序列,我们将用户建模为层次隐马尔可夫过程,并将用户的当前上下文作为该模型中的隐变量。对于给定的用户,我们的模型用于推断上下文状态之间转换的最大似然序列,并预测下一个动作上下文的概率分布。然后使用预测的上下文生成建议。我们的评估结果使用Last。FM音乐播放列表数据表明,与基线方法相比,该方法在准确性和多样性方面取得了明显更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting Recommendations to Contextual Changes Using Hierarchical Hidden Markov Models
Recommender systems help users find items of interest by tailoring their recommendations to users' personal preferences. The utility of an item for a user, however, may vary greatly depending on that user's specific situation or the context in which the item is used. Without considering these changes in preferences, the recommendations may match the general preferences of a user, but they may have small value for the user in his/her current situation. In this paper, we introduce a hierarchical hidden Markov model for capturing changes in user's preferences. Using a user's feedback sequence on items, we model the user as a hierarchical hidden Markov process and the current context of the user as a hidden variable in this model. For a given user, our model is used to infer the maximum likelihood sequence of transitions between contextual states and to predict the probability distribution for the context of the next action. The predicted context is then used to generate recommendations. Our evaluation results using Last.fm music playlist data, indicate that this approach achieves significantly better performance in terms of accuracy and diversity compared to baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信