基于FPGA平台的路面不平整实时检测系统的实现

Wen-Hui Chen, H. Hsu, Yu‐Chen Lin
{"title":"基于FPGA平台的路面不平整实时检测系统的实现","authors":"Wen-Hui Chen, H. Hsu, Yu‐Chen Lin","doi":"10.1109/ICCE-Taiwan55306.2022.9869054","DOIUrl":null,"url":null,"abstract":"Potholes or uneven road surfaces can lead to flat tires, suspension damage, or even accidents. A real-time uneven pavement detection system can provide drivers with information beforehand to reduce car damage and safety risk. It also can be used to inform road repair and maintenance departments to save the efforts of manual inspection. The proposed real-time detection system employs the YOLO-v4 algorithm as the detection model followed by quantization using the Vitis-AI framework for model compression so that the developed system can be performed on the Xilinx FPGA platform without compromising on accuracy and speed. Experimental results show that the proposed system can obtain 28 FPS with four-thread running at 300 MHz.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of a Real-time Uneven Pavement Detection System on FPGA Platforms\",\"authors\":\"Wen-Hui Chen, H. Hsu, Yu‐Chen Lin\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potholes or uneven road surfaces can lead to flat tires, suspension damage, or even accidents. A real-time uneven pavement detection system can provide drivers with information beforehand to reduce car damage and safety risk. It also can be used to inform road repair and maintenance departments to save the efforts of manual inspection. The proposed real-time detection system employs the YOLO-v4 algorithm as the detection model followed by quantization using the Vitis-AI framework for model compression so that the developed system can be performed on the Xilinx FPGA platform without compromising on accuracy and speed. Experimental results show that the proposed system can obtain 28 FPS with four-thread running at 300 MHz.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

坑洼不平的路面会导致轮胎漏气、悬挂损坏,甚至发生事故。不平整路面实时检测系统可以提前为驾驶员提供信息,降低车辆损坏和安全风险。它也可以用来通知道路维修和养护部门,节省人工检查的工作量。本文提出的实时检测系统采用YOLO-v4算法作为检测模型,然后使用Vitis-AI框架进行量化模型压缩,从而使所开发的系统可以在Xilinx FPGA平台上运行,而不会影响精度和速度。实验结果表明,该系统在四线程运行频率为300 MHz的情况下可以获得28 FPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of a Real-time Uneven Pavement Detection System on FPGA Platforms
Potholes or uneven road surfaces can lead to flat tires, suspension damage, or even accidents. A real-time uneven pavement detection system can provide drivers with information beforehand to reduce car damage and safety risk. It also can be used to inform road repair and maintenance departments to save the efforts of manual inspection. The proposed real-time detection system employs the YOLO-v4 algorithm as the detection model followed by quantization using the Vitis-AI framework for model compression so that the developed system can be performed on the Xilinx FPGA platform without compromising on accuracy and speed. Experimental results show that the proposed system can obtain 28 FPS with four-thread running at 300 MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信