使用一组系统调用表示学习误用分类器和异常检测

Dae-Ki Kang, D. Fuller, Vasant G Honavar
{"title":"使用一组系统调用表示学习误用分类器和异常检测","authors":"Dae-Ki Kang, D. Fuller, Vasant G Honavar","doi":"10.1109/IAW.2005.1495942","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a \"bag of system calls\" representation for intrusion detection in system call sequences and describe misuse and anomaly detection results with standard machine learning techniques on University of New Mexico (UNM) and MIT Lincoln Lab (MIT LL) system call sequences with the proposed representation. With the feature representation as input, we compare the performance of several machine learning techniques for misuse detection and show experimental results on anomaly detection. The results show that standard machine learning and clustering techniques on simple \"bag of system calls\" representation of system call sequences is effective and often performs better than those approaches that use foreign contiguous subsequences in detecting intrusive behaviors of compromised processes.","PeriodicalId":252208,"journal":{"name":"Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"164","resultStr":"{\"title\":\"Learning classifiers for misuse and anomaly detection using a bag of system calls representation\",\"authors\":\"Dae-Ki Kang, D. Fuller, Vasant G Honavar\",\"doi\":\"10.1109/IAW.2005.1495942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a \\\"bag of system calls\\\" representation for intrusion detection in system call sequences and describe misuse and anomaly detection results with standard machine learning techniques on University of New Mexico (UNM) and MIT Lincoln Lab (MIT LL) system call sequences with the proposed representation. With the feature representation as input, we compare the performance of several machine learning techniques for misuse detection and show experimental results on anomaly detection. The results show that standard machine learning and clustering techniques on simple \\\"bag of system calls\\\" representation of system call sequences is effective and often performs better than those approaches that use foreign contiguous subsequences in detecting intrusive behaviors of compromised processes.\",\"PeriodicalId\":252208,\"journal\":{\"name\":\"Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"164\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAW.2005.1495942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2005.1495942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 164

摘要

在本文中,我们提出了一种用于系统调用序列入侵检测的“系统调用包”表示,并使用所提出的表示在新墨西哥大学(UNM)和麻省理工学院林肯实验室(MIT LL)的系统调用序列上使用标准机器学习技术描述误用和异常检测结果。以特征表示作为输入,我们比较了几种机器学习技术在误用检测中的性能,并给出了异常检测的实验结果。结果表明,在系统调用序列的简单“系统调用包”表示上,标准的机器学习和聚类技术是有效的,并且在检测受损进程的侵入行为时通常比使用外来连续子序列的方法表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning classifiers for misuse and anomaly detection using a bag of system calls representation
In this paper, we propose a "bag of system calls" representation for intrusion detection in system call sequences and describe misuse and anomaly detection results with standard machine learning techniques on University of New Mexico (UNM) and MIT Lincoln Lab (MIT LL) system call sequences with the proposed representation. With the feature representation as input, we compare the performance of several machine learning techniques for misuse detection and show experimental results on anomaly detection. The results show that standard machine learning and clustering techniques on simple "bag of system calls" representation of system call sequences is effective and often performs better than those approaches that use foreign contiguous subsequences in detecting intrusive behaviors of compromised processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信