Manan Agrawal, M. Anwar, Nakul Saroha, Anurag Goel
{"title":"使用稀疏去噪自编码器的面部图像升级","authors":"Manan Agrawal, M. Anwar, Nakul Saroha, Anurag Goel","doi":"10.1109/ICCMC56507.2023.10083628","DOIUrl":null,"url":null,"abstract":"Even in this era of digital images, still many images and media are hazy, pixelated, and blurry. This could be due to low-quality imaging sensors, poor image stabilization, or the image itself being old. This study proposes the Sparse Denoising Autoencoders (SDAEs) for upscaling blurry images. The performance of the proposed SDAEs is then compared with the deep learning architecture, Pix2Pix Generative Adversarial Networks (GANs) by primarily focusing on the facial images. The experimental results show that the SDAEs give slightly better results than GANs. Additionally, the SDAE architecture is computationally 30% efficient when compared to the Pix2Pix GAN.","PeriodicalId":197059,"journal":{"name":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SupRes: Facial Image Upscaling Using Sparse Denoising Autoencoder\",\"authors\":\"Manan Agrawal, M. Anwar, Nakul Saroha, Anurag Goel\",\"doi\":\"10.1109/ICCMC56507.2023.10083628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even in this era of digital images, still many images and media are hazy, pixelated, and blurry. This could be due to low-quality imaging sensors, poor image stabilization, or the image itself being old. This study proposes the Sparse Denoising Autoencoders (SDAEs) for upscaling blurry images. The performance of the proposed SDAEs is then compared with the deep learning architecture, Pix2Pix Generative Adversarial Networks (GANs) by primarily focusing on the facial images. The experimental results show that the SDAEs give slightly better results than GANs. Additionally, the SDAE architecture is computationally 30% efficient when compared to the Pix2Pix GAN.\",\"PeriodicalId\":197059,\"journal\":{\"name\":\"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC56507.2023.10083628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC56507.2023.10083628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SupRes: Facial Image Upscaling Using Sparse Denoising Autoencoder
Even in this era of digital images, still many images and media are hazy, pixelated, and blurry. This could be due to low-quality imaging sensors, poor image stabilization, or the image itself being old. This study proposes the Sparse Denoising Autoencoders (SDAEs) for upscaling blurry images. The performance of the proposed SDAEs is then compared with the deep learning architecture, Pix2Pix Generative Adversarial Networks (GANs) by primarily focusing on the facial images. The experimental results show that the SDAEs give slightly better results than GANs. Additionally, the SDAE architecture is computationally 30% efficient when compared to the Pix2Pix GAN.