{"title":"基于活时值的任意拓扑网络故障检测器","authors":"Karla Vargas, S. Rajsbaum","doi":"10.1109/DSN.2019.00038","DOIUrl":null,"url":null,"abstract":"We present an implementation of an eventually perfect failure detector in an arbitrarily connected, partitionable network. We assume ADD channels: for each one there exist constants K, D, not known to the processes, such that for every K consecutive messages sent in one direction, at least one is delivered within time D. The best previous implementation used messages of bounded size, but exponential in n, the number of nodes. The main contribution of this paper is a novel use of time-to-live values in the design of failure detectors, obtaining a flexible implementation that uses messages of size O(n log n)","PeriodicalId":271955,"journal":{"name":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Eventually Perfect Failure Detector for Networks of Arbitrary Topology Connected with ADD Channels Using Time-To-Live Values\",\"authors\":\"Karla Vargas, S. Rajsbaum\",\"doi\":\"10.1109/DSN.2019.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an implementation of an eventually perfect failure detector in an arbitrarily connected, partitionable network. We assume ADD channels: for each one there exist constants K, D, not known to the processes, such that for every K consecutive messages sent in one direction, at least one is delivered within time D. The best previous implementation used messages of bounded size, but exponential in n, the number of nodes. The main contribution of this paper is a novel use of time-to-live values in the design of failure detectors, obtaining a flexible implementation that uses messages of size O(n log n)\",\"PeriodicalId\":271955,\"journal\":{\"name\":\"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2019.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2019.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Eventually Perfect Failure Detector for Networks of Arbitrary Topology Connected with ADD Channels Using Time-To-Live Values
We present an implementation of an eventually perfect failure detector in an arbitrarily connected, partitionable network. We assume ADD channels: for each one there exist constants K, D, not known to the processes, such that for every K consecutive messages sent in one direction, at least one is delivered within time D. The best previous implementation used messages of bounded size, but exponential in n, the number of nodes. The main contribution of this paper is a novel use of time-to-live values in the design of failure detectors, obtaining a flexible implementation that uses messages of size O(n log n)