{"title":"跳跃扩散市场模型中鞅测度的存在性","authors":"Jacopo Mancin, W. Runggaldier","doi":"10.1142/9789814602075_0003","DOIUrl":null,"url":null,"abstract":"In the context of jump-diffusion market models we construct examples that satisfy the weaker no-arbitrage condition of NA1 (NUPBR), but not NFLVR. We show that in these examples the only candidate for the density process of an equivalent local martingale measure is a supermartingale that is not a martingale, not even a local martingale. This candidate is given by the supermartingale deflator resulting from the inverse of the discounted growth optimal portfolio. In particular, we con- sider an example with constraints on the portfolio that go beyond the standard ones for admissibility.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Existence of Martingale Measures in Jump Diffusion Market Models\",\"authors\":\"Jacopo Mancin, W. Runggaldier\",\"doi\":\"10.1142/9789814602075_0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of jump-diffusion market models we construct examples that satisfy the weaker no-arbitrage condition of NA1 (NUPBR), but not NFLVR. We show that in these examples the only candidate for the density process of an equivalent local martingale measure is a supermartingale that is not a martingale, not even a local martingale. This candidate is given by the supermartingale deflator resulting from the inverse of the discounted growth optimal portfolio. In particular, we con- sider an example with constraints on the portfolio that go beyond the standard ones for admissibility.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789814602075_0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814602075_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Existence of Martingale Measures in Jump Diffusion Market Models
In the context of jump-diffusion market models we construct examples that satisfy the weaker no-arbitrage condition of NA1 (NUPBR), but not NFLVR. We show that in these examples the only candidate for the density process of an equivalent local martingale measure is a supermartingale that is not a martingale, not even a local martingale. This candidate is given by the supermartingale deflator resulting from the inverse of the discounted growth optimal portfolio. In particular, we con- sider an example with constraints on the portfolio that go beyond the standard ones for admissibility.