{"title":"带无损缓冲器的自振荡反激变换器,用于非接触电源","authors":"R. Lin, Zhizhen Huang","doi":"10.1109/ECCE.2010.5617969","DOIUrl":null,"url":null,"abstract":"This paper presents the self-oscillating flyback converter with an integrated flyback-transformer whose auxiliary winding is utilized as the lossless snubber inductor and output-voltage sensing winding. In the conventional flyback converter, the turn-off switching loss caused by high switching frequency leads to low conversion efficiency. The proposed lossless snubber scheme not only reduces the voltage spikes at turn-off interval, but also recycles the energy stored in the leakage inductor to the input source for improving conversion efficiency. Considering further simplification, the lossless snubber inductor and the output-voltage sensing winding can be combined together as a single winding. A prototype circuit of the 15W self-oscillating flyback converter with lossless snubber circuit and output-voltage sensing circuit is built to verify the performances, such as the voltage stress on the switch, the conversion efficiency, and the load regulation.","PeriodicalId":161915,"journal":{"name":"2010 IEEE Energy Conversion Congress and Exposition","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-oscillation flyback converter with lossless snubber for contactless power supply application\",\"authors\":\"R. Lin, Zhizhen Huang\",\"doi\":\"10.1109/ECCE.2010.5617969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the self-oscillating flyback converter with an integrated flyback-transformer whose auxiliary winding is utilized as the lossless snubber inductor and output-voltage sensing winding. In the conventional flyback converter, the turn-off switching loss caused by high switching frequency leads to low conversion efficiency. The proposed lossless snubber scheme not only reduces the voltage spikes at turn-off interval, but also recycles the energy stored in the leakage inductor to the input source for improving conversion efficiency. Considering further simplification, the lossless snubber inductor and the output-voltage sensing winding can be combined together as a single winding. A prototype circuit of the 15W self-oscillating flyback converter with lossless snubber circuit and output-voltage sensing circuit is built to verify the performances, such as the voltage stress on the switch, the conversion efficiency, and the load regulation.\",\"PeriodicalId\":161915,\"journal\":{\"name\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2010.5617969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Energy Conversion Congress and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2010.5617969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-oscillation flyback converter with lossless snubber for contactless power supply application
This paper presents the self-oscillating flyback converter with an integrated flyback-transformer whose auxiliary winding is utilized as the lossless snubber inductor and output-voltage sensing winding. In the conventional flyback converter, the turn-off switching loss caused by high switching frequency leads to low conversion efficiency. The proposed lossless snubber scheme not only reduces the voltage spikes at turn-off interval, but also recycles the energy stored in the leakage inductor to the input source for improving conversion efficiency. Considering further simplification, the lossless snubber inductor and the output-voltage sensing winding can be combined together as a single winding. A prototype circuit of the 15W self-oscillating flyback converter with lossless snubber circuit and output-voltage sensing circuit is built to verify the performances, such as the voltage stress on the switch, the conversion efficiency, and the load regulation.