预测EPEX市场的波动性

A. Ciarreta, P. Muniain, A. Zarraga
{"title":"预测EPEX市场的波动性","authors":"A. Ciarreta, P. Muniain, A. Zarraga","doi":"10.1109/EEM.2017.7981963","DOIUrl":null,"url":null,"abstract":"This paper uses high-frequency intraday electricity prices from the EPEX market to estimate and forecast realised volatility. Variation is broken down into jump and continuous components using quadratic variation theory. Then several heterogeneous autoregressive models are estimated for the logarithmic and standard deviation transformations. GARCH structures are included in the error terms of the models when evidence of conditional heteroscedasticity is found. Model selection is based on various out-of-sample criteria. Under the logarithmic transformation the simplest model outperforms the rest. Under the standard deviation transformation, jump detection before model estimation is useful to improve forecasting.","PeriodicalId":416082,"journal":{"name":"2017 14th International Conference on the European Energy Market (EEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting volatility in the EPEX market\",\"authors\":\"A. Ciarreta, P. Muniain, A. Zarraga\",\"doi\":\"10.1109/EEM.2017.7981963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses high-frequency intraday electricity prices from the EPEX market to estimate and forecast realised volatility. Variation is broken down into jump and continuous components using quadratic variation theory. Then several heterogeneous autoregressive models are estimated for the logarithmic and standard deviation transformations. GARCH structures are included in the error terms of the models when evidence of conditional heteroscedasticity is found. Model selection is based on various out-of-sample criteria. Under the logarithmic transformation the simplest model outperforms the rest. Under the standard deviation transformation, jump detection before model estimation is useful to improve forecasting.\",\"PeriodicalId\":416082,\"journal\":{\"name\":\"2017 14th International Conference on the European Energy Market (EEM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Conference on the European Energy Market (EEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEM.2017.7981963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Conference on the European Energy Market (EEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEM.2017.7981963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文使用来自EPEX市场的高频日内电价来估计和预测已实现的波动率。利用二次变分理论将变分分解为跳跃分量和连续分量。然后对对数和标准差变换估计了几种异构自回归模型。当发现条件异方差的证据时,GARCH结构被包含在模型的误差项中。模型选择是基于各种样本外标准。在对数变换下,最简单的模型优于其他模型。在标准差变换下,在模型估计之前进行跳跃检测有助于提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting volatility in the EPEX market
This paper uses high-frequency intraday electricity prices from the EPEX market to estimate and forecast realised volatility. Variation is broken down into jump and continuous components using quadratic variation theory. Then several heterogeneous autoregressive models are estimated for the logarithmic and standard deviation transformations. GARCH structures are included in the error terms of the models when evidence of conditional heteroscedasticity is found. Model selection is based on various out-of-sample criteria. Under the logarithmic transformation the simplest model outperforms the rest. Under the standard deviation transformation, jump detection before model estimation is useful to improve forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信