{"title":"采用新BS 910:2013+A1:2015的多平面方形空心截面焊接接头损伤安全性评估","authors":"S. Lie, Vipin Sukumara-Pillai","doi":"10.11648/J.AAS.20190401.12","DOIUrl":null,"url":null,"abstract":"The safety assessment procedure in the new BS 7910:2013+A1:2015 guide is based on the failure assessment diagram (FAD) method. This paper aims to validate the above procedure for complex geometries such as damaged multi-planar square hollow section (SHS) welded joints and to recommend optimal solutions if necessary. FAD curves are constructed for cracked multi-planar SHS TT-, YT- and KT-joints for the first time and are compared with the Option 1 curve of the BS guide. A robust novel automatic finite element (FE) mesh generator, which is validated using the full-scale experimental test results, is used in this study. The new FE mesh generator addresses the issue of non-convergence by using a key-hole for the modelling the crack tip in elastic-plastic analyses. The new FE mesh generator is capable to model cracks and geometries of arbitrary dimensions and is able to achieve convergence of solutions even at a high plastic deformation. It is shown to be aiding in speedy generation of cracked FE mesh models which is otherwise time consuming to generate using commercial software packages. The results show that the Option 1 curve does not always guarantee safe solutions for multi-planar SHS welded joints. Hence, a penalty factor of 1.1 is recommended to be used to calculate the plastic collapse load. The use of proposed penalty factor gives optimal solutions for cracked multi-planar SHS TT-, YT- and KT-joints.","PeriodicalId":108573,"journal":{"name":"Advances in Applied Sciences","volume":"463 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Safety Assessment of Damaged Multi-planar Square Hollow Section Welded Joints Using the New BS 910:2013+A1:2015\",\"authors\":\"S. Lie, Vipin Sukumara-Pillai\",\"doi\":\"10.11648/J.AAS.20190401.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The safety assessment procedure in the new BS 7910:2013+A1:2015 guide is based on the failure assessment diagram (FAD) method. This paper aims to validate the above procedure for complex geometries such as damaged multi-planar square hollow section (SHS) welded joints and to recommend optimal solutions if necessary. FAD curves are constructed for cracked multi-planar SHS TT-, YT- and KT-joints for the first time and are compared with the Option 1 curve of the BS guide. A robust novel automatic finite element (FE) mesh generator, which is validated using the full-scale experimental test results, is used in this study. The new FE mesh generator addresses the issue of non-convergence by using a key-hole for the modelling the crack tip in elastic-plastic analyses. The new FE mesh generator is capable to model cracks and geometries of arbitrary dimensions and is able to achieve convergence of solutions even at a high plastic deformation. It is shown to be aiding in speedy generation of cracked FE mesh models which is otherwise time consuming to generate using commercial software packages. The results show that the Option 1 curve does not always guarantee safe solutions for multi-planar SHS welded joints. Hence, a penalty factor of 1.1 is recommended to be used to calculate the plastic collapse load. The use of proposed penalty factor gives optimal solutions for cracked multi-planar SHS TT-, YT- and KT-joints.\",\"PeriodicalId\":108573,\"journal\":{\"name\":\"Advances in Applied Sciences\",\"volume\":\"463 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AAS.20190401.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AAS.20190401.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety Assessment of Damaged Multi-planar Square Hollow Section Welded Joints Using the New BS 910:2013+A1:2015
The safety assessment procedure in the new BS 7910:2013+A1:2015 guide is based on the failure assessment diagram (FAD) method. This paper aims to validate the above procedure for complex geometries such as damaged multi-planar square hollow section (SHS) welded joints and to recommend optimal solutions if necessary. FAD curves are constructed for cracked multi-planar SHS TT-, YT- and KT-joints for the first time and are compared with the Option 1 curve of the BS guide. A robust novel automatic finite element (FE) mesh generator, which is validated using the full-scale experimental test results, is used in this study. The new FE mesh generator addresses the issue of non-convergence by using a key-hole for the modelling the crack tip in elastic-plastic analyses. The new FE mesh generator is capable to model cracks and geometries of arbitrary dimensions and is able to achieve convergence of solutions even at a high plastic deformation. It is shown to be aiding in speedy generation of cracked FE mesh models which is otherwise time consuming to generate using commercial software packages. The results show that the Option 1 curve does not always guarantee safe solutions for multi-planar SHS welded joints. Hence, a penalty factor of 1.1 is recommended to be used to calculate the plastic collapse load. The use of proposed penalty factor gives optimal solutions for cracked multi-planar SHS TT-, YT- and KT-joints.