二维流形上的黎曼度量与欧拉-点索刚体问题有关

B. Bonnard, O. Cots, N. Shcherbakova
{"title":"二维流形上的黎曼度量与欧拉-点索刚体问题有关","authors":"B. Bonnard, O. Cots, N. Shcherbakova","doi":"10.1109/CDC.2013.6760144","DOIUrl":null,"url":null,"abstract":"The Euler-Poinsot rigid body problem is a well known model of left-invariant metrics on SO(3). In the present paper we discuss the properties of two related reduced 2D models: the sub-Riemanian metric of a system of three coupled spins and the Riemannian metric associated to the Euler-Poinsot problem via the Serret-Andoyer reduction.We explicitly construct Jacobi fields and explain the structure of conjugate loci in the Riemannian case and give the first numerical results for the spin dynamics case.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem\",\"authors\":\"B. Bonnard, O. Cots, N. Shcherbakova\",\"doi\":\"10.1109/CDC.2013.6760144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Euler-Poinsot rigid body problem is a well known model of left-invariant metrics on SO(3). In the present paper we discuss the properties of two related reduced 2D models: the sub-Riemanian metric of a system of three coupled spins and the Riemannian metric associated to the Euler-Poinsot problem via the Serret-Andoyer reduction.We explicitly construct Jacobi fields and explain the structure of conjugate loci in the Riemannian case and give the first numerical results for the spin dynamics case.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6760144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Euler-Poinsot刚体问题是SO(3)上的一个众所周知的左不变度量模型。本文讨论了两个相关的简化二维模型的性质:三个耦合自旋系统的次黎曼度规和通过Serret-Andoyer约简与Euler-Poinsot问题相关的黎曼度规。我们明确地构造了雅可比场,解释了黎曼情况下共轭轨迹的结构,并给出了自旋动力学情况下的第一个数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem
The Euler-Poinsot rigid body problem is a well known model of left-invariant metrics on SO(3). In the present paper we discuss the properties of two related reduced 2D models: the sub-Riemanian metric of a system of three coupled spins and the Riemannian metric associated to the Euler-Poinsot problem via the Serret-Andoyer reduction.We explicitly construct Jacobi fields and explain the structure of conjugate loci in the Riemannian case and give the first numerical results for the spin dynamics case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信