{"title":"矩阵集合中的几何","authors":"Laerte Bemm, Douglas Monteiro Caetano","doi":"10.35819/REMAT2019V5I2ID3351","DOIUrl":null,"url":null,"abstract":"Este trabalho pretende estabelecer uma correspondência biunívoca entre o conjunto dos números complexos e um subconjunto S de matrizes 2x2 com entradas reais e mostrar que esses conjuntos se comportam algebricamente da mesma forma. A partir disso foram definidos alguns elementos geométricos no conjunto das matrizes 2x2 com entradas reais. Mais precisamente, definimos o módulo de uma matriz e o ângulo entre duas matrizes. Em seguida, mostramos que a correspondência citada preserva ângulos e módulos.","PeriodicalId":170779,"journal":{"name":"REMAT: Revista Eletrônica da Matemática","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometria no conjunto das matrizes\",\"authors\":\"Laerte Bemm, Douglas Monteiro Caetano\",\"doi\":\"10.35819/REMAT2019V5I2ID3351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este trabalho pretende estabelecer uma correspondência biunívoca entre o conjunto dos números complexos e um subconjunto S de matrizes 2x2 com entradas reais e mostrar que esses conjuntos se comportam algebricamente da mesma forma. A partir disso foram definidos alguns elementos geométricos no conjunto das matrizes 2x2 com entradas reais. Mais precisamente, definimos o módulo de uma matriz e o ângulo entre duas matrizes. Em seguida, mostramos que a correspondência citada preserva ângulos e módulos.\",\"PeriodicalId\":170779,\"journal\":{\"name\":\"REMAT: Revista Eletrônica da Matemática\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"REMAT: Revista Eletrônica da Matemática\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35819/REMAT2019V5I2ID3351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"REMAT: Revista Eletrônica da Matemática","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35819/REMAT2019V5I2ID3351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Este trabalho pretende estabelecer uma correspondência biunívoca entre o conjunto dos números complexos e um subconjunto S de matrizes 2x2 com entradas reais e mostrar que esses conjuntos se comportam algebricamente da mesma forma. A partir disso foram definidos alguns elementos geométricos no conjunto das matrizes 2x2 com entradas reais. Mais precisamente, definimos o módulo de uma matriz e o ângulo entre duas matrizes. Em seguida, mostramos que a correspondência citada preserva ângulos e módulos.