基于数据挖掘技术的客户流失预测及其对电信行业增值业务营销应用发展的影响

Sajjad Shokouhyar, Parna Saeidpour, Ali Otarkhani
{"title":"基于数据挖掘技术的客户流失预测及其对电信行业增值业务营销应用发展的影响","authors":"Sajjad Shokouhyar, Parna Saeidpour, Ali Otarkhani","doi":"10.4018/IJISSS.2018100104","DOIUrl":null,"url":null,"abstract":"This article aims to predict reasons behind customers' churn in the mobile communication market. In this study, different data mining techniques such as logistic regression, decision trees, artificial neural networks, and K-nearest neighbor were examined. In addition, the general trend of the use of the techniques is presented, in order to identify and analyze customers' behavior and discover hidden patterns in the database of an active Coin the field of VAS1for mobile phones. Based on the results of this article, organizations and companies active in this area can identify customers' behavior and develop the required marketing strategies for each group of customers.","PeriodicalId":151306,"journal":{"name":"Int. J. Inf. Syst. Serv. Sect.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predicting Customers' Churn Using Data Mining Technique and its Effect on the Development of Marketing Applications in Value-Added Services in Telecom Industry\",\"authors\":\"Sajjad Shokouhyar, Parna Saeidpour, Ali Otarkhani\",\"doi\":\"10.4018/IJISSS.2018100104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to predict reasons behind customers' churn in the mobile communication market. In this study, different data mining techniques such as logistic regression, decision trees, artificial neural networks, and K-nearest neighbor were examined. In addition, the general trend of the use of the techniques is presented, in order to identify and analyze customers' behavior and discover hidden patterns in the database of an active Coin the field of VAS1for mobile phones. Based on the results of this article, organizations and companies active in this area can identify customers' behavior and develop the required marketing strategies for each group of customers.\",\"PeriodicalId\":151306,\"journal\":{\"name\":\"Int. J. Inf. Syst. Serv. Sect.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Syst. Serv. Sect.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJISSS.2018100104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Syst. Serv. Sect.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJISSS.2018100104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文旨在预测移动通信市场客户流失背后的原因。在这项研究中,不同的数据挖掘技术,如逻辑回归,决策树,人工神经网络和k近邻进行了检验。此外,为了识别和分析客户的行为,发现手机vas1领域的活动硬币数据库中隐藏的模式,提出了使用这些技术的总体趋势。基于本文的结果,活跃在这一领域的组织和公司可以识别客户的行为,并为每一组客户制定所需的营销策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Customers' Churn Using Data Mining Technique and its Effect on the Development of Marketing Applications in Value-Added Services in Telecom Industry
This article aims to predict reasons behind customers' churn in the mobile communication market. In this study, different data mining techniques such as logistic regression, decision trees, artificial neural networks, and K-nearest neighbor were examined. In addition, the general trend of the use of the techniques is presented, in order to identify and analyze customers' behavior and discover hidden patterns in the database of an active Coin the field of VAS1for mobile phones. Based on the results of this article, organizations and companies active in this area can identify customers' behavior and develop the required marketing strategies for each group of customers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信