实现了一种基于归一化互相关系数的模板匹配算法在数字系统转换中的应用

Francisco Emmanuel T. Munsayac, Lea Monica B. Alonzo, Delfin Enrique G. Lindo, R. Baldovino, N. Bugtai
{"title":"实现了一种基于归一化互相关系数的模板匹配算法在数字系统转换中的应用","authors":"Francisco Emmanuel T. Munsayac, Lea Monica B. Alonzo, Delfin Enrique G. Lindo, R. Baldovino, N. Bugtai","doi":"10.1109/HNICEM.2017.8269520","DOIUrl":null,"url":null,"abstract":"In digital image processing, template matching is a technique used for finding or searching for areas of an image that could either match or be similar to the template image. In this study, an algorithm that utilizes both Python programming and the OpenCV library for template matching in number system conversion was successfully demonstrated. Images containing binary numbers were tested for template matching and converted to string. Then, these strings were converted to their respective decimal equivalents. It was found that OpenCV offers a tool that is easy to use for systems that require recognizing patterns of an image. Furthermore, it was observed that the ease of use is accompanied with various limitations such as dependence to pre-processing or having fixed scale, rotation, font, and background color.","PeriodicalId":104407,"journal":{"name":"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Implementation of a normalized cross-correlation coefficient-based template matching algorithm in number system conversion\",\"authors\":\"Francisco Emmanuel T. Munsayac, Lea Monica B. Alonzo, Delfin Enrique G. Lindo, R. Baldovino, N. Bugtai\",\"doi\":\"10.1109/HNICEM.2017.8269520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In digital image processing, template matching is a technique used for finding or searching for areas of an image that could either match or be similar to the template image. In this study, an algorithm that utilizes both Python programming and the OpenCV library for template matching in number system conversion was successfully demonstrated. Images containing binary numbers were tested for template matching and converted to string. Then, these strings were converted to their respective decimal equivalents. It was found that OpenCV offers a tool that is easy to use for systems that require recognizing patterns of an image. Furthermore, it was observed that the ease of use is accompanied with various limitations such as dependence to pre-processing or having fixed scale, rotation, font, and background color.\",\"PeriodicalId\":104407,\"journal\":{\"name\":\"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM.2017.8269520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2017.8269520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在数字图像处理中,模板匹配是一种用于查找或搜索图像中与模板图像匹配或相似的区域的技术。在本研究中,成功地演示了一种利用Python编程和OpenCV库进行数制转换模板匹配的算法。包含二进制数的图像被测试用于模板匹配并转换为字符串。然后,将这些字符串转换为相应的十进制等效值。我们发现OpenCV为需要识别图像模式的系统提供了一个易于使用的工具。此外,人们还观察到,易用性伴随着各种限制,如依赖于预处理或固定的比例、旋转、字体和背景颜色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of a normalized cross-correlation coefficient-based template matching algorithm in number system conversion
In digital image processing, template matching is a technique used for finding or searching for areas of an image that could either match or be similar to the template image. In this study, an algorithm that utilizes both Python programming and the OpenCV library for template matching in number system conversion was successfully demonstrated. Images containing binary numbers were tested for template matching and converted to string. Then, these strings were converted to their respective decimal equivalents. It was found that OpenCV offers a tool that is easy to use for systems that require recognizing patterns of an image. Furthermore, it was observed that the ease of use is accompanied with various limitations such as dependence to pre-processing or having fixed scale, rotation, font, and background color.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信