{"title":"未知人类意图情景下的人机交互","authors":"M. Awais, D. Henrich","doi":"10.1109/FIT.2013.24","DOIUrl":null,"url":null,"abstract":"In this paper an approach is introduced to human robot interaction in a known scenario with unknown human intentions. Initially, the robot reacts by copying the human action. As the human-robot interaction proceeds, the level of human-robot interaction improves. Before each reaction, the robot hypothesizes its potential actions and selects one that is found most suitable. The robot may also use the human-robot interaction history. Along with the history, the robot also considers the action randomness and heuristic based action predictions. As solution, a general reinforcement Learning (RL) based algorithm is proposed that suggests learning of human robot interaction in an unknown human intention scenario. A Particle Filter (PF) based algorithm is proposed to support the probabilistic action selection for human-robot interaction. The experiments for human-robot interaction are performed by a robotic arm involving the arrangement of known objects with unknown human intention. The task of the robot is to interact with the human according to the estimated human intention.","PeriodicalId":179067,"journal":{"name":"2013 11th International Conference on Frontiers of Information Technology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Human-Robot Interaction in an Unknown Human Intention Scenario\",\"authors\":\"M. Awais, D. Henrich\",\"doi\":\"10.1109/FIT.2013.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an approach is introduced to human robot interaction in a known scenario with unknown human intentions. Initially, the robot reacts by copying the human action. As the human-robot interaction proceeds, the level of human-robot interaction improves. Before each reaction, the robot hypothesizes its potential actions and selects one that is found most suitable. The robot may also use the human-robot interaction history. Along with the history, the robot also considers the action randomness and heuristic based action predictions. As solution, a general reinforcement Learning (RL) based algorithm is proposed that suggests learning of human robot interaction in an unknown human intention scenario. A Particle Filter (PF) based algorithm is proposed to support the probabilistic action selection for human-robot interaction. The experiments for human-robot interaction are performed by a robotic arm involving the arrangement of known objects with unknown human intention. The task of the robot is to interact with the human according to the estimated human intention.\",\"PeriodicalId\":179067,\"journal\":{\"name\":\"2013 11th International Conference on Frontiers of Information Technology\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Conference on Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT.2013.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2013.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human-Robot Interaction in an Unknown Human Intention Scenario
In this paper an approach is introduced to human robot interaction in a known scenario with unknown human intentions. Initially, the robot reacts by copying the human action. As the human-robot interaction proceeds, the level of human-robot interaction improves. Before each reaction, the robot hypothesizes its potential actions and selects one that is found most suitable. The robot may also use the human-robot interaction history. Along with the history, the robot also considers the action randomness and heuristic based action predictions. As solution, a general reinforcement Learning (RL) based algorithm is proposed that suggests learning of human robot interaction in an unknown human intention scenario. A Particle Filter (PF) based algorithm is proposed to support the probabilistic action selection for human-robot interaction. The experiments for human-robot interaction are performed by a robotic arm involving the arrangement of known objects with unknown human intention. The task of the robot is to interact with the human according to the estimated human intention.