利用轨迹运动学描述符的基于事件的监控视频摘要

Wei-Cheng Wang, P. Chung, Chun-Rong Huang, Wei-Yun Huang
{"title":"利用轨迹运动学描述符的基于事件的监控视频摘要","authors":"Wei-Cheng Wang, P. Chung, Chun-Rong Huang, Wei-Yun Huang","doi":"10.23919/MVA.2017.7986848","DOIUrl":null,"url":null,"abstract":"Video synopsis has been shown its promising performance in visual surveillance, but the rearranged foreground objects may disorderly occlude to each other which makes end users hard to identify the targets. In this paper, a novel event based video synopsis method is proposed by using the clustering results of trajectories of foreground objects. To represent the kinematic events of each trajectory, trajectory kinematics descriptors are applied. Then, affinity propagation is used to cluster trajectories with similar kinematic events. Finally, each kinematic event group is used to generate an event based synopsis video. As shown in the experiments, the generated event based synopsis videos can effectively and efficiently reduce the lengths of the surveillance videos and are much clear for browsing compared to the states-of-the-art video synopsis methods.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Event based surveillance video synopsis using trajectory kinematics descriptors\",\"authors\":\"Wei-Cheng Wang, P. Chung, Chun-Rong Huang, Wei-Yun Huang\",\"doi\":\"10.23919/MVA.2017.7986848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video synopsis has been shown its promising performance in visual surveillance, but the rearranged foreground objects may disorderly occlude to each other which makes end users hard to identify the targets. In this paper, a novel event based video synopsis method is proposed by using the clustering results of trajectories of foreground objects. To represent the kinematic events of each trajectory, trajectory kinematics descriptors are applied. Then, affinity propagation is used to cluster trajectories with similar kinematic events. Finally, each kinematic event group is used to generate an event based synopsis video. As shown in the experiments, the generated event based synopsis videos can effectively and efficiently reduce the lengths of the surveillance videos and are much clear for browsing compared to the states-of-the-art video synopsis methods.\",\"PeriodicalId\":193716,\"journal\":{\"name\":\"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA.2017.7986848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

视频摘要在视觉监控中已显示出其良好的应用前景,但重新排列后的前景对象可能会相互无序遮挡,给最终用户识别目标带来困难。本文利用前景目标轨迹聚类结果,提出了一种基于事件的视频摘要方法。为了表示每个轨迹的运动学事件,应用了轨迹运动学描述符。然后,使用亲和传播对具有相似运动事件的轨迹进行聚类。最后,利用每个运动事件组生成一个基于事件的摘要视频。实验表明,与现有的视频摘要方法相比,所生成的基于事件的视频摘要可以有效地缩短监控视频的长度,并且更易于浏览。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event based surveillance video synopsis using trajectory kinematics descriptors
Video synopsis has been shown its promising performance in visual surveillance, but the rearranged foreground objects may disorderly occlude to each other which makes end users hard to identify the targets. In this paper, a novel event based video synopsis method is proposed by using the clustering results of trajectories of foreground objects. To represent the kinematic events of each trajectory, trajectory kinematics descriptors are applied. Then, affinity propagation is used to cluster trajectories with similar kinematic events. Finally, each kinematic event group is used to generate an event based synopsis video. As shown in the experiments, the generated event based synopsis videos can effectively and efficiently reduce the lengths of the surveillance videos and are much clear for browsing compared to the states-of-the-art video synopsis methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信