利用被试特异性判别脑电特征进行运动意象方向分类

Kavitha P. Thomas, Neethu Robinson, A. P. Vinod
{"title":"利用被试特异性判别脑电特征进行运动意象方向分类","authors":"Kavitha P. Thomas, Neethu Robinson, A. P. Vinod","doi":"10.1109/ICAwST.2019.8923216","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG)-based BrainComputer Interface (BCI) technology needs efficient algorithms to find distinct EEG patterns/features to realize applications with distinct high-dimensional control signals. This paper proposes a novel feature extraction methodology for separating EEG patterns associated right hand motor imagery performed towards left and right directions. The most discriminative subject-specific feature set is chosen based on Fisher’s ratio of absolute phase values of EEG in 6 low frequency sub bands. Using this, the proposed BCI system is capable of providing better classification results than state-ofthe-art methodology with fixed channels, fusing absolute phase and spatial features from selected subject-specific discriminative channels. Experimental analysis shows that though parietal lobe is vital in providing distinguishable features, the channel set that provide maximum accuracy, is highly subject-specific. Hence, subject-specific BCI that can decode finer parameters of imagined movement are feasible and further research to understand the activations elicited in parietal lobe can contribute towards robust BCI systems.","PeriodicalId":156538,"journal":{"name":"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Utilizing Subject-Specific Discriminative EEG Features for Classification of Motor Imagery Directions\",\"authors\":\"Kavitha P. Thomas, Neethu Robinson, A. P. Vinod\",\"doi\":\"10.1109/ICAwST.2019.8923216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalogram (EEG)-based BrainComputer Interface (BCI) technology needs efficient algorithms to find distinct EEG patterns/features to realize applications with distinct high-dimensional control signals. This paper proposes a novel feature extraction methodology for separating EEG patterns associated right hand motor imagery performed towards left and right directions. The most discriminative subject-specific feature set is chosen based on Fisher’s ratio of absolute phase values of EEG in 6 low frequency sub bands. Using this, the proposed BCI system is capable of providing better classification results than state-ofthe-art methodology with fixed channels, fusing absolute phase and spatial features from selected subject-specific discriminative channels. Experimental analysis shows that though parietal lobe is vital in providing distinguishable features, the channel set that provide maximum accuracy, is highly subject-specific. Hence, subject-specific BCI that can decode finer parameters of imagined movement are feasible and further research to understand the activations elicited in parietal lobe can contribute towards robust BCI systems.\",\"PeriodicalId\":156538,\"journal\":{\"name\":\"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAwST.2019.8923216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAwST.2019.8923216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于脑电图(EEG)的脑机接口(BCI)技术需要高效的算法来发现不同的脑电图模式/特征,以实现具有不同高维控制信号的应用。本文提出了一种新的特征提取方法,用于分离与左右方向运动图像相关的脑电图模式。根据EEG在6个低频子带的绝对相位值的Fisher比值选择最具判别性的主体特征集。利用这一点,所提出的BCI系统能够提供比具有固定通道的最先进方法更好的分类结果,融合了特定主题的绝对相位和空间特征的判别通道。实验分析表明,虽然顶叶在提供可区分的特征方面至关重要,但提供最大准确度的信道集是高度特定于受试者的。因此,能够解码想象运动的更精细参数的特定主体脑机接口是可行的,进一步研究顶叶引发的激活有助于构建强大的脑机接口系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Subject-Specific Discriminative EEG Features for Classification of Motor Imagery Directions
Electroencephalogram (EEG)-based BrainComputer Interface (BCI) technology needs efficient algorithms to find distinct EEG patterns/features to realize applications with distinct high-dimensional control signals. This paper proposes a novel feature extraction methodology for separating EEG patterns associated right hand motor imagery performed towards left and right directions. The most discriminative subject-specific feature set is chosen based on Fisher’s ratio of absolute phase values of EEG in 6 low frequency sub bands. Using this, the proposed BCI system is capable of providing better classification results than state-ofthe-art methodology with fixed channels, fusing absolute phase and spatial features from selected subject-specific discriminative channels. Experimental analysis shows that though parietal lobe is vital in providing distinguishable features, the channel set that provide maximum accuracy, is highly subject-specific. Hence, subject-specific BCI that can decode finer parameters of imagined movement are feasible and further research to understand the activations elicited in parietal lobe can contribute towards robust BCI systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信