{"title":"光电用金属有机化学气相沉积法制备硼掺杂氧化锌薄膜的电学和光学性质","authors":"Duke Ateyh Oeba, C. Mosiori","doi":"10.9734/psij/2022/v26i7756","DOIUrl":null,"url":null,"abstract":"Globally, there is a high demand for clean, sustainable and renewable energy for domestic and industrial use. Conventional photovoltaic cell technology relies heavily on crystalline silicon wafers which render silicon-based solar cells expensive due to the initial cost of production and required complex deposition methods. Due to these challenges, great research interest is now directed towards thin-film solar cells. In this work, the metal-organic chemical vapour deposition (CVD) method was chosen in the preparation of boron-doped zinc oxide (ZnO: B) thin film onto a glass slide substrate. The prepared ZnO: B thin films were characterized and optimized as a window layer for solar light trapping. The transmittance of the ZnO: B films varied between 70% and 81% for boron concentration ranging from 0.0 M to 0.06 M. With the increase in boron concentration, bandgap and resistivity of the ZnO: B varied from 2.96 to 3.72 eV and 120 Ω-cm to 58 Ω-cm, respectively. Based on the results obtained, we believe that ZnO: B is suitable as a window layer for solar light trapping in the fabrication of a photovoltaic cell.","PeriodicalId":124795,"journal":{"name":"Physical Science International Journal","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical and Optical Properties of Boron Doped Zinc Oxide Thin-film Deposited by Metal-organic Chemical Vapour Deposition for Photovoltaic Application\",\"authors\":\"Duke Ateyh Oeba, C. Mosiori\",\"doi\":\"10.9734/psij/2022/v26i7756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, there is a high demand for clean, sustainable and renewable energy for domestic and industrial use. Conventional photovoltaic cell technology relies heavily on crystalline silicon wafers which render silicon-based solar cells expensive due to the initial cost of production and required complex deposition methods. Due to these challenges, great research interest is now directed towards thin-film solar cells. In this work, the metal-organic chemical vapour deposition (CVD) method was chosen in the preparation of boron-doped zinc oxide (ZnO: B) thin film onto a glass slide substrate. The prepared ZnO: B thin films were characterized and optimized as a window layer for solar light trapping. The transmittance of the ZnO: B films varied between 70% and 81% for boron concentration ranging from 0.0 M to 0.06 M. With the increase in boron concentration, bandgap and resistivity of the ZnO: B varied from 2.96 to 3.72 eV and 120 Ω-cm to 58 Ω-cm, respectively. Based on the results obtained, we believe that ZnO: B is suitable as a window layer for solar light trapping in the fabrication of a photovoltaic cell.\",\"PeriodicalId\":124795,\"journal\":{\"name\":\"Physical Science International Journal\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Science International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/psij/2022/v26i7756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Science International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/psij/2022/v26i7756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical and Optical Properties of Boron Doped Zinc Oxide Thin-film Deposited by Metal-organic Chemical Vapour Deposition for Photovoltaic Application
Globally, there is a high demand for clean, sustainable and renewable energy for domestic and industrial use. Conventional photovoltaic cell technology relies heavily on crystalline silicon wafers which render silicon-based solar cells expensive due to the initial cost of production and required complex deposition methods. Due to these challenges, great research interest is now directed towards thin-film solar cells. In this work, the metal-organic chemical vapour deposition (CVD) method was chosen in the preparation of boron-doped zinc oxide (ZnO: B) thin film onto a glass slide substrate. The prepared ZnO: B thin films were characterized and optimized as a window layer for solar light trapping. The transmittance of the ZnO: B films varied between 70% and 81% for boron concentration ranging from 0.0 M to 0.06 M. With the increase in boron concentration, bandgap and resistivity of the ZnO: B varied from 2.96 to 3.72 eV and 120 Ω-cm to 58 Ω-cm, respectively. Based on the results obtained, we believe that ZnO: B is suitable as a window layer for solar light trapping in the fabrication of a photovoltaic cell.