反向注入槽内圆柱孔的高分辨率传热测量

Bo Shi, Xueying Li, Jing Ren, Hongde Jiang
{"title":"反向注入槽内圆柱孔的高分辨率传热测量","authors":"Bo Shi, Xueying Li, Jing Ren, Hongde Jiang","doi":"10.1115/GT2018-76676","DOIUrl":null,"url":null,"abstract":"Recent studies have demonstrated that cylindrical hole with backward injection arrangement, of which the jets are injected reverse to the mainstream flow direction, outperforms its forward injection counterpart, of which the jets are injected along the flow direction, at high blowing ratio, since the jet starts to lift off typically for forward injection when blowing ratio is greater than 1.0. However, the backward injection configuration features a large separation and induces high heat transfer near the hole. Relative few studies have been conducted to mitigated the drawbacks of backward injection arrangements. The present study investigated several flat plate trenched hole arrangements with backward injection. Experiments were conducted in a low speed suction type wind tunnel. The trench width was varied from 2d to 4d for the backward arrangements with fixed trench depth of 0.75d. Besides, a simple backward and a trenched hole with forward injection, whose width is 2d and depth is 0.75d, were also studied as references. Transient thermal measurements were carried out for all the arrangements with IR camera. Detailed distributions of heat transfer coefficient were obtained. For each case, blowing ratio was varied from 0.25 to 4.0, while the density ratio was almost unity. Effects of injection angle, trench width and blowing ratio on the surface heat transfer distributions were obtained, and the results are presented and explained in this investigation.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High Resolution Heat Transfer Measurements of Cylindrical Holes Embedded in a Trench With Backward Injection\",\"authors\":\"Bo Shi, Xueying Li, Jing Ren, Hongde Jiang\",\"doi\":\"10.1115/GT2018-76676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have demonstrated that cylindrical hole with backward injection arrangement, of which the jets are injected reverse to the mainstream flow direction, outperforms its forward injection counterpart, of which the jets are injected along the flow direction, at high blowing ratio, since the jet starts to lift off typically for forward injection when blowing ratio is greater than 1.0. However, the backward injection configuration features a large separation and induces high heat transfer near the hole. Relative few studies have been conducted to mitigated the drawbacks of backward injection arrangements. The present study investigated several flat plate trenched hole arrangements with backward injection. Experiments were conducted in a low speed suction type wind tunnel. The trench width was varied from 2d to 4d for the backward arrangements with fixed trench depth of 0.75d. Besides, a simple backward and a trenched hole with forward injection, whose width is 2d and depth is 0.75d, were also studied as references. Transient thermal measurements were carried out for all the arrangements with IR camera. Detailed distributions of heat transfer coefficient were obtained. For each case, blowing ratio was varied from 0.25 to 4.0, while the density ratio was almost unity. Effects of injection angle, trench width and blowing ratio on the surface heat transfer distributions were obtained, and the results are presented and explained in this investigation.\",\"PeriodicalId\":239866,\"journal\":{\"name\":\"Volume 5C: Heat Transfer\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5C: Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5C: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近的研究表明,在高吹气比下,反向喷射布置的柱孔射流相对于沿流动方向喷射布置的柱孔射流要优于沿流动方向喷射布置的柱孔射流,因为通常在吹气比大于1.0时,正向喷射射流才开始起飞。然而,反向喷射结构的特点是分离大,导致孔附近的高传热。相对较少的研究是为了减轻反向注射安排的缺点。本文研究了几种反向注入的平板沟孔布置。实验在低速吸力式风洞中进行。当沟深固定为0.75d时,反向布置的沟宽从2d到4d不等。此外,还研究了一个宽度为2d,深度为0.75d的简单后向和前向注入的沟状孔作为参考。利用红外热像仪对所有布置进行了瞬态热测量。得到了传热系数的详细分布。每种情况下,吹气比在0.25 ~ 4.0之间变化,而密度比几乎一致。研究了喷射角、沟槽宽度和吹风比对表面传热分布的影响,并对结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Resolution Heat Transfer Measurements of Cylindrical Holes Embedded in a Trench With Backward Injection
Recent studies have demonstrated that cylindrical hole with backward injection arrangement, of which the jets are injected reverse to the mainstream flow direction, outperforms its forward injection counterpart, of which the jets are injected along the flow direction, at high blowing ratio, since the jet starts to lift off typically for forward injection when blowing ratio is greater than 1.0. However, the backward injection configuration features a large separation and induces high heat transfer near the hole. Relative few studies have been conducted to mitigated the drawbacks of backward injection arrangements. The present study investigated several flat plate trenched hole arrangements with backward injection. Experiments were conducted in a low speed suction type wind tunnel. The trench width was varied from 2d to 4d for the backward arrangements with fixed trench depth of 0.75d. Besides, a simple backward and a trenched hole with forward injection, whose width is 2d and depth is 0.75d, were also studied as references. Transient thermal measurements were carried out for all the arrangements with IR camera. Detailed distributions of heat transfer coefficient were obtained. For each case, blowing ratio was varied from 0.25 to 4.0, while the density ratio was almost unity. Effects of injection angle, trench width and blowing ratio on the surface heat transfer distributions were obtained, and the results are presented and explained in this investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信