{"title":"高线性和高效率堆叠fet毫米波功率放大器集成电路","authors":"T. Yoshimasu, Mengchu Fang, T. Sugiura","doi":"10.1109/RFIT49453.2020.9226212","DOIUrl":null,"url":null,"abstract":"Recently reported CMOS power amplifier ICs for microwave and millimeter-wave communication systems such as 5G are summarized and reviewed in this paper. Stacked-FETs are widely utilized to increase the output power and to conquer low breakdown voltage issues. In addition, adaptive bias and load circuits are fully described to improve the linearity and back-off efficiency of the power amplifier ICs in this paper.","PeriodicalId":283714,"journal":{"name":"2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Linearity and High Efficiency Stacked-FET Millimeter-Wave Power Amplifier ICs\",\"authors\":\"T. Yoshimasu, Mengchu Fang, T. Sugiura\",\"doi\":\"10.1109/RFIT49453.2020.9226212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently reported CMOS power amplifier ICs for microwave and millimeter-wave communication systems such as 5G are summarized and reviewed in this paper. Stacked-FETs are widely utilized to increase the output power and to conquer low breakdown voltage issues. In addition, adaptive bias and load circuits are fully described to improve the linearity and back-off efficiency of the power amplifier ICs in this paper.\",\"PeriodicalId\":283714,\"journal\":{\"name\":\"2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIT49453.2020.9226212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT49453.2020.9226212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Linearity and High Efficiency Stacked-FET Millimeter-Wave Power Amplifier ICs
Recently reported CMOS power amplifier ICs for microwave and millimeter-wave communication systems such as 5G are summarized and reviewed in this paper. Stacked-FETs are widely utilized to increase the output power and to conquer low breakdown voltage issues. In addition, adaptive bias and load circuits are fully described to improve the linearity and back-off efficiency of the power amplifier ICs in this paper.