Cloud- cffr:云无线接入网(C-RAN)中协调的部分频率复用

Abolfazl Hajisami, D. Pompili
{"title":"Cloud- cffr:云无线接入网(C-RAN)中协调的部分频率复用","authors":"Abolfazl Hajisami, D. Pompili","doi":"10.1109/MASS.2015.70","DOIUrl":null,"url":null,"abstract":"Fractional Frequency Reuse (FFR) and Coordinated Multi Point (CoMP) processing are two of the conventional methods to mitigate the Inter-Cell Interference (ICI) and to improve the average Signal-to-Interference-plus-Noise Ratio (SINR). However, FFR is associated with low system spectral efficiency and CoMP does not take any action to mitigate the inter-cluster interference. In the context of Cloud Radio Access Network (C-RAN) -- a new centralized paradigm for broadband wireless access that addresses efficiently the fluctuation in capacity demand through real-time Virtual Base Station (VBS) cooperation in the Cloud -- in this paper an innovative uplink solution, called Cloud-CFFR, is proposed to address the aforementioned problems. With respect to both FFR and CoMP, Cloud-CFFR decreases the complexity, delay, and ICI while increasing the system spectral efficiency. Since the system performance in cell-edge regions relies on the cooperation of different VBSs, there is no service interruption in handling handovers, moreover, in order to address the unanticipated change in capacity demand, Cloud-CFFR dynamically changes the sub-band boundaries based on the number of active users in the clusters. Simulation results confirm the validity of our analysis and show the benefits of this novel uplink solution.","PeriodicalId":436496,"journal":{"name":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Cloud-CFFR: Coordinated Fractional Frequency Reuse in Cloud Radio Access Network (C-RAN)\",\"authors\":\"Abolfazl Hajisami, D. Pompili\",\"doi\":\"10.1109/MASS.2015.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional Frequency Reuse (FFR) and Coordinated Multi Point (CoMP) processing are two of the conventional methods to mitigate the Inter-Cell Interference (ICI) and to improve the average Signal-to-Interference-plus-Noise Ratio (SINR). However, FFR is associated with low system spectral efficiency and CoMP does not take any action to mitigate the inter-cluster interference. In the context of Cloud Radio Access Network (C-RAN) -- a new centralized paradigm for broadband wireless access that addresses efficiently the fluctuation in capacity demand through real-time Virtual Base Station (VBS) cooperation in the Cloud -- in this paper an innovative uplink solution, called Cloud-CFFR, is proposed to address the aforementioned problems. With respect to both FFR and CoMP, Cloud-CFFR decreases the complexity, delay, and ICI while increasing the system spectral efficiency. Since the system performance in cell-edge regions relies on the cooperation of different VBSs, there is no service interruption in handling handovers, moreover, in order to address the unanticipated change in capacity demand, Cloud-CFFR dynamically changes the sub-band boundaries based on the number of active users in the clusters. Simulation results confirm the validity of our analysis and show the benefits of this novel uplink solution.\",\"PeriodicalId\":436496,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASS.2015.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2015.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

分数频率复用(FFR)和多点协调处理(CoMP)是缓解小区间干扰(ICI)和提高平均信噪比(SINR)的两种常用方法。然而,FFR与低系统频谱效率相关,CoMP不采取任何措施来减轻簇间干扰。云无线接入网(C-RAN)是一种新的集中式宽带无线接入模式,通过云中实时虚拟基站(VBS)的合作有效地解决了容量需求的波动问题。在此背景下,本文提出了一种名为Cloud- cffr的创新上行解决方案来解决上述问题。相对于FFR和CoMP, Cloud-CFFR在提高系统频谱效率的同时降低了复杂度、延迟和ICI。由于蜂窝边缘区域的系统性能依赖于不同vbs的合作,因此在处理切换时不会出现业务中断,此外,为了解决容量需求的意外变化,Cloud-CFFR根据集群中活跃用户的数量动态改变子带边界。仿真结果验证了分析的有效性,并显示了该方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud-CFFR: Coordinated Fractional Frequency Reuse in Cloud Radio Access Network (C-RAN)
Fractional Frequency Reuse (FFR) and Coordinated Multi Point (CoMP) processing are two of the conventional methods to mitigate the Inter-Cell Interference (ICI) and to improve the average Signal-to-Interference-plus-Noise Ratio (SINR). However, FFR is associated with low system spectral efficiency and CoMP does not take any action to mitigate the inter-cluster interference. In the context of Cloud Radio Access Network (C-RAN) -- a new centralized paradigm for broadband wireless access that addresses efficiently the fluctuation in capacity demand through real-time Virtual Base Station (VBS) cooperation in the Cloud -- in this paper an innovative uplink solution, called Cloud-CFFR, is proposed to address the aforementioned problems. With respect to both FFR and CoMP, Cloud-CFFR decreases the complexity, delay, and ICI while increasing the system spectral efficiency. Since the system performance in cell-edge regions relies on the cooperation of different VBSs, there is no service interruption in handling handovers, moreover, in order to address the unanticipated change in capacity demand, Cloud-CFFR dynamically changes the sub-band boundaries based on the number of active users in the clusters. Simulation results confirm the validity of our analysis and show the benefits of this novel uplink solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信