用于线偏振光空间控制的向列液晶波导

V. S. Kabanava, I. Rushnova, E. Melnikova, A. Tolstik
{"title":"用于线偏振光空间控制的向列液晶波导","authors":"V. S. Kabanava, I. Rushnova, E. Melnikova, A. Tolstik","doi":"10.1109/PIERS-Spring46901.2019.9017592","DOIUrl":null,"url":null,"abstract":"Electrically switchable liquid crystal (LC) waveguide structures for spatial-polarization control of light waves become more and more widespread as optical components for waveguide photonics. The motivation of the work was to design and fabricate miniaturized, low-cost electrically switchable LC waveguides for spatial control of linearly polarized light beams. With the use of new configurations of the spatially modulated electric field applied to planar-aligned sandwich-type LC cells $(d=20\\mu \\mathrm{m}$ thick), the polarization-sensitive waveguide structures performing the functions of optical splitter and adder were designed and experimentally studied. The current-conducting glass substrates coated with patterned electrodes (splitter-shaped and adder-shaped chromium layers) were used to control the optical properties of LC waveguides by applying an external low-frequency (1 kHz) electrical voltage to the LC cell electrodes. The operation principle of the fabricated optical components is based on the effect of total internal reflection (TIR) of laser radiation from the electrically controlled refractive interface between LC areas with orthogonal director orientations. Optical components of this type look promising for the production of competitive low power consumption photonic devices with enhanced functional characteristics.","PeriodicalId":446190,"journal":{"name":"2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nematic Liquid Crystal Waveguides for Spatial Control of Linearly Polarized Light Waves\",\"authors\":\"V. S. Kabanava, I. Rushnova, E. Melnikova, A. Tolstik\",\"doi\":\"10.1109/PIERS-Spring46901.2019.9017592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrically switchable liquid crystal (LC) waveguide structures for spatial-polarization control of light waves become more and more widespread as optical components for waveguide photonics. The motivation of the work was to design and fabricate miniaturized, low-cost electrically switchable LC waveguides for spatial control of linearly polarized light beams. With the use of new configurations of the spatially modulated electric field applied to planar-aligned sandwich-type LC cells $(d=20\\\\mu \\\\mathrm{m}$ thick), the polarization-sensitive waveguide structures performing the functions of optical splitter and adder were designed and experimentally studied. The current-conducting glass substrates coated with patterned electrodes (splitter-shaped and adder-shaped chromium layers) were used to control the optical properties of LC waveguides by applying an external low-frequency (1 kHz) electrical voltage to the LC cell electrodes. The operation principle of the fabricated optical components is based on the effect of total internal reflection (TIR) of laser radiation from the electrically controlled refractive interface between LC areas with orthogonal director orientations. Optical components of this type look promising for the production of competitive low power consumption photonic devices with enhanced functional characteristics.\",\"PeriodicalId\":446190,\"journal\":{\"name\":\"2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIERS-Spring46901.2019.9017592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIERS-Spring46901.2019.9017592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为波导光子学的光学元件,用于光波空间偏振控制的电开关液晶波导结构得到了越来越广泛的应用。这项工作的动机是设计和制造小型化、低成本的电开关LC波导,用于线偏振光光束的空间控制。将空间调制电场的新构型应用于平向三明治型LC单元(d=20\mu \mathrm{m}$厚),设计并实验研究了具有分光器和加法器功能的偏振敏感波导结构。在导电玻璃衬底上涂有图案化电极(分割器形和加法器形铬层),通过在LC电池电极上施加外部低频(1 kHz)电压来控制LC波导的光学特性。制作的光学元件的工作原理是基于激光辐射的全内反射(TIR)效应,激光辐射来自具有正交方向的LC区域之间的电控折射率界面。这种类型的光学元件看起来很有希望生产具有增强功能特性的具有竞争力的低功耗光子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nematic Liquid Crystal Waveguides for Spatial Control of Linearly Polarized Light Waves
Electrically switchable liquid crystal (LC) waveguide structures for spatial-polarization control of light waves become more and more widespread as optical components for waveguide photonics. The motivation of the work was to design and fabricate miniaturized, low-cost electrically switchable LC waveguides for spatial control of linearly polarized light beams. With the use of new configurations of the spatially modulated electric field applied to planar-aligned sandwich-type LC cells $(d=20\mu \mathrm{m}$ thick), the polarization-sensitive waveguide structures performing the functions of optical splitter and adder were designed and experimentally studied. The current-conducting glass substrates coated with patterned electrodes (splitter-shaped and adder-shaped chromium layers) were used to control the optical properties of LC waveguides by applying an external low-frequency (1 kHz) electrical voltage to the LC cell electrodes. The operation principle of the fabricated optical components is based on the effect of total internal reflection (TIR) of laser radiation from the electrically controlled refractive interface between LC areas with orthogonal director orientations. Optical components of this type look promising for the production of competitive low power consumption photonic devices with enhanced functional characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信