黎曼流形中的切轨迹

K. Hatsuse, Y. Morita
{"title":"黎曼流形中的切轨迹","authors":"K. Hatsuse, Y. Morita","doi":"10.5036/BFSIU1968.18.45","DOIUrl":null,"url":null,"abstract":"We assume hereafter M satisfies the condition (B) at p, and assume sectional curvatures Kσ of M are bounded from below. Let i(p) be the injective radius at p, and let i(M) the injective radius of M. Then we can choose a Riemannian metric g on M as i(M)=1. We denote by L(γ) the length of a piecewise smooth curve γ. Let δ be a lower bound for sectional curvatures Kσ. Let K0=min {δ,0} and N(K0) a simply connected complete Riemannian manifold of constant sectional curvature K0. We consider a geodesic triangle abc in N(K0) which consists of","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cut locus in a Riemannian manifold\",\"authors\":\"K. Hatsuse, Y. Morita\",\"doi\":\"10.5036/BFSIU1968.18.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We assume hereafter M satisfies the condition (B) at p, and assume sectional curvatures Kσ of M are bounded from below. Let i(p) be the injective radius at p, and let i(M) the injective radius of M. Then we can choose a Riemannian metric g on M as i(M)=1. We denote by L(γ) the length of a piecewise smooth curve γ. Let δ be a lower bound for sectional curvatures Kσ. Let K0=min {δ,0} and N(K0) a simply connected complete Riemannian manifold of constant sectional curvature K0. We consider a geodesic triangle abc in N(K0) which consists of\",\"PeriodicalId\":141145,\"journal\":{\"name\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/BFSIU1968.18.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.18.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们假定M在p处满足条件(B),并假定M的截面曲率Kσ从下有界。设i(p)为p点的内射半径,设i(M)为M点的内射半径,那么我们可以选择M点上的黎曼度规g为i(M)=1。我们用L(γ)表示分段光滑曲线γ的长度。设δ为截面曲率Kσ的下界。设K0=min {δ,0}, N(K0)为常截面曲率K0的单连通完全黎曼流形。我们考虑N(K0)中的测地线三角形abc,它由
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cut locus in a Riemannian manifold
We assume hereafter M satisfies the condition (B) at p, and assume sectional curvatures Kσ of M are bounded from below. Let i(p) be the injective radius at p, and let i(M) the injective radius of M. Then we can choose a Riemannian metric g on M as i(M)=1. We denote by L(γ) the length of a piecewise smooth curve γ. Let δ be a lower bound for sectional curvatures Kσ. Let K0=min {δ,0} and N(K0) a simply connected complete Riemannian manifold of constant sectional curvature K0. We consider a geodesic triangle abc in N(K0) which consists of
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信