ELM算法与No-Prop算法的比较分析

Abobakr Khalil Alshamiri, Alok Singh, R. Bapi
{"title":"ELM算法与No-Prop算法的比较分析","authors":"Abobakr Khalil Alshamiri, Alok Singh, R. Bapi","doi":"10.1109/IC3.2016.7880217","DOIUrl":null,"url":null,"abstract":"Extreme learning machine (ELM) is a learning method for training feedforward neural networks with random­ized hidden layer(s). It initializes the weights of hidden neurons in a random manner and determines the output weights in an analytic manner by making use of Moore-Penrose (MP) generalized inverse. No-Prop algorithm is recently proposed training algorithm for feedforward neural networks in which the weights of the hidden neurons are randomly assigned and fixed, and the output weights are trained using least mean square error (LMS) algorithm. The difference between ELM and No-Prop lies in the way the output weights are trained. While ELM optimizes the output weights in batch mode using MP generalized inverse, No-Prop uses LMS gradient algorithm to train the output weights iteratively. In this paper, a comparative analysis based on empirical studies regarding the stability and convergence performance of ELM and No-Prop algorithms for data classification is provided.","PeriodicalId":294210,"journal":{"name":"2016 Ninth International Conference on Contemporary Computing (IC3)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative analysis of ELM and No-Prop algorithms\",\"authors\":\"Abobakr Khalil Alshamiri, Alok Singh, R. Bapi\",\"doi\":\"10.1109/IC3.2016.7880217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme learning machine (ELM) is a learning method for training feedforward neural networks with random­ized hidden layer(s). It initializes the weights of hidden neurons in a random manner and determines the output weights in an analytic manner by making use of Moore-Penrose (MP) generalized inverse. No-Prop algorithm is recently proposed training algorithm for feedforward neural networks in which the weights of the hidden neurons are randomly assigned and fixed, and the output weights are trained using least mean square error (LMS) algorithm. The difference between ELM and No-Prop lies in the way the output weights are trained. While ELM optimizes the output weights in batch mode using MP generalized inverse, No-Prop uses LMS gradient algorithm to train the output weights iteratively. In this paper, a comparative analysis based on empirical studies regarding the stability and convergence performance of ELM and No-Prop algorithms for data classification is provided.\",\"PeriodicalId\":294210,\"journal\":{\"name\":\"2016 Ninth International Conference on Contemporary Computing (IC3)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Ninth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2016.7880217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Ninth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2016.7880217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

极限学习机(Extreme learning machine, ELM)是一种训练具有随机隐层的前馈神经网络的学习方法。它以随机方式初始化隐藏神经元的权值,并利用Moore-Penrose (MP)广义逆以解析方式确定输出权值。No-Prop算法是最近提出的一种前馈神经网络的训练算法,该算法随机分配和固定隐藏神经元的权值,并使用最小均方误差(LMS)算法训练输出权值。ELM和No-Prop的区别在于输出权值的训练方式。ELM使用MP广义逆在批处理模式下优化输出权值,而No-Prop使用LMS梯度算法迭代训练输出权值。本文在实证研究的基础上,对ELM算法和No-Prop算法在数据分类中的稳定性和收敛性能进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of ELM and No-Prop algorithms
Extreme learning machine (ELM) is a learning method for training feedforward neural networks with random­ized hidden layer(s). It initializes the weights of hidden neurons in a random manner and determines the output weights in an analytic manner by making use of Moore-Penrose (MP) generalized inverse. No-Prop algorithm is recently proposed training algorithm for feedforward neural networks in which the weights of the hidden neurons are randomly assigned and fixed, and the output weights are trained using least mean square error (LMS) algorithm. The difference between ELM and No-Prop lies in the way the output weights are trained. While ELM optimizes the output weights in batch mode using MP generalized inverse, No-Prop uses LMS gradient algorithm to train the output weights iteratively. In this paper, a comparative analysis based on empirical studies regarding the stability and convergence performance of ELM and No-Prop algorithms for data classification is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信