低可见性有功配电系统状态估计的物理条件生成对抗网络

M. Kamal, Wenting Li, Deepjyoti Deka, Hamed Mohsenian-Rad
{"title":"低可见性有功配电系统状态估计的物理条件生成对抗网络","authors":"M. Kamal, Wenting Li, Deepjyoti Deka, Hamed Mohsenian-Rad","doi":"10.1109/SGSMA51733.2022.9805847","DOIUrl":null,"url":null,"abstract":"A novel method is proposed to address the issue of low-observability in Distribution System State Estimation (DSSE). We first use the historical data at the unobservable locations to construct and train proper Generative Adversarial Network (GAN) models to compensate for lack of direct real-time measurements. We then integrate the trained GAN models, together with the direct synchronized measurements at the observable locations, into the formulation of the DSSE problem. In this regard, we simultaneously take advantage of the forecasting capabilities of the GAN models, the available real-time synchronized measurements, and the DSSE formulations based on physical laws in the power system. As a result, on one hand we conduct a physics-conditioned estimation of the unknown power injections at the unobservable locations; and on the other hand, we also achieve a complete DSSE solution for the understudy low-observable active power distribution system.","PeriodicalId":256954,"journal":{"name":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Physics-Conditioned Generative Adversarial Networks for State Estimation in Active Power Distribution Systems with Low Observability\",\"authors\":\"M. Kamal, Wenting Li, Deepjyoti Deka, Hamed Mohsenian-Rad\",\"doi\":\"10.1109/SGSMA51733.2022.9805847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method is proposed to address the issue of low-observability in Distribution System State Estimation (DSSE). We first use the historical data at the unobservable locations to construct and train proper Generative Adversarial Network (GAN) models to compensate for lack of direct real-time measurements. We then integrate the trained GAN models, together with the direct synchronized measurements at the observable locations, into the formulation of the DSSE problem. In this regard, we simultaneously take advantage of the forecasting capabilities of the GAN models, the available real-time synchronized measurements, and the DSSE formulations based on physical laws in the power system. As a result, on one hand we conduct a physics-conditioned estimation of the unknown power injections at the unobservable locations; and on the other hand, we also achieve a complete DSSE solution for the understudy low-observable active power distribution system.\",\"PeriodicalId\":256954,\"journal\":{\"name\":\"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SGSMA51733.2022.9805847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGSMA51733.2022.9805847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对配电系统状态估计(DSSE)中的低可见性问题,提出了一种新的方法。我们首先使用不可观测位置的历史数据来构建和训练适当的生成对抗网络(GAN)模型,以补偿缺乏直接的实时测量。然后,我们将训练好的GAN模型与可观测位置的直接同步测量整合到DSSE问题的公式中。在这方面,我们同时利用GAN模型的预测能力、可用的实时同步测量和基于电力系统物理定律的DSSE公式。因此,一方面,我们对不可观测位置的未知功率注入进行了物理条件估计;另一方面,我们也为备用低观测有功配电系统实现了一个完整的DSSE解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-Conditioned Generative Adversarial Networks for State Estimation in Active Power Distribution Systems with Low Observability
A novel method is proposed to address the issue of low-observability in Distribution System State Estimation (DSSE). We first use the historical data at the unobservable locations to construct and train proper Generative Adversarial Network (GAN) models to compensate for lack of direct real-time measurements. We then integrate the trained GAN models, together with the direct synchronized measurements at the observable locations, into the formulation of the DSSE problem. In this regard, we simultaneously take advantage of the forecasting capabilities of the GAN models, the available real-time synchronized measurements, and the DSSE formulations based on physical laws in the power system. As a result, on one hand we conduct a physics-conditioned estimation of the unknown power injections at the unobservable locations; and on the other hand, we also achieve a complete DSSE solution for the understudy low-observable active power distribution system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信