{"title":"采用纯三维计算流体力学虚拟测试设计低比速干坑固体处理泵","authors":"Azfar Ali, Zhuoyu Zhou","doi":"10.1115/imece2022-94551","DOIUrl":null,"url":null,"abstract":"\n A relatively low specific speed dry pit solids handling pump was designed from scratch with pure 3D CFD virtual testing. In-house codes were used to provide preliminary design of the impeller, volute, etc. The 3D CFD tool Simerics-MP+ was employed for improvement of the design to achieve the desired pump performance. The virtual tests covered a wide range of flowrates from 40% to 130% of the best efficiency point (BEP). Final physical testing shows the CFD predictions are in good agreement with the measurements.","PeriodicalId":292222,"journal":{"name":"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design a Low Specific Speed Dry Pit Solids Handling Pump With Pure 3-D Computational Fluid Dynamics Virtual Testing\",\"authors\":\"Azfar Ali, Zhuoyu Zhou\",\"doi\":\"10.1115/imece2022-94551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A relatively low specific speed dry pit solids handling pump was designed from scratch with pure 3D CFD virtual testing. In-house codes were used to provide preliminary design of the impeller, volute, etc. The 3D CFD tool Simerics-MP+ was employed for improvement of the design to achieve the desired pump performance. The virtual tests covered a wide range of flowrates from 40% to 130% of the best efficiency point (BEP). Final physical testing shows the CFD predictions are in good agreement with the measurements.\",\"PeriodicalId\":292222,\"journal\":{\"name\":\"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-94551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-94551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design a Low Specific Speed Dry Pit Solids Handling Pump With Pure 3-D Computational Fluid Dynamics Virtual Testing
A relatively low specific speed dry pit solids handling pump was designed from scratch with pure 3D CFD virtual testing. In-house codes were used to provide preliminary design of the impeller, volute, etc. The 3D CFD tool Simerics-MP+ was employed for improvement of the design to achieve the desired pump performance. The virtual tests covered a wide range of flowrates from 40% to 130% of the best efficiency point (BEP). Final physical testing shows the CFD predictions are in good agreement with the measurements.