Bowen Lu, Shiwei Lai, Yajuan Tang, Tao Cui, Chengyuan Fan, Jianghong Ou, Dahua Fan
{"title":"异构物联网网络中的深度模型训练与部署","authors":"Bowen Lu, Shiwei Lai, Yajuan Tang, Tao Cui, Chengyuan Fan, Jianghong Ou, Dahua Fan","doi":"10.4108/eetmca.v7i3.2899","DOIUrl":null,"url":null,"abstract":"As a typical form of machines learning, deep learning has attracted much attention from researchers. It can independently construct (train) basic rules according to the sample data in the learning process. Especially in the field of machine vision, neural networks are usually trained by supervised learning, that is, by example data and predefined results of example data. In this paper, we firstly overview the current research progress on the deep model training and deployment on the heterogeneous Internet of Things (IoT) networks, by taking into account both the latency and energy consumption from various devices in the system. We then summarize the existing challenges on the model training and model deployment on the heterogeneous IoT devices. We further give some feasible solutions to solve the challenges on the model training and model deployment on the heterogeneous IoT devices. The study in this paper can serve as an important reference for the development of deep model training and model deployment for heterogeneous IoT networks.","PeriodicalId":299985,"journal":{"name":"EAI Endorsed Trans. Mob. Commun. Appl.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Model Training and Deployment in Heterogeneous IoT Networks\",\"authors\":\"Bowen Lu, Shiwei Lai, Yajuan Tang, Tao Cui, Chengyuan Fan, Jianghong Ou, Dahua Fan\",\"doi\":\"10.4108/eetmca.v7i3.2899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a typical form of machines learning, deep learning has attracted much attention from researchers. It can independently construct (train) basic rules according to the sample data in the learning process. Especially in the field of machine vision, neural networks are usually trained by supervised learning, that is, by example data and predefined results of example data. In this paper, we firstly overview the current research progress on the deep model training and deployment on the heterogeneous Internet of Things (IoT) networks, by taking into account both the latency and energy consumption from various devices in the system. We then summarize the existing challenges on the model training and model deployment on the heterogeneous IoT devices. We further give some feasible solutions to solve the challenges on the model training and model deployment on the heterogeneous IoT devices. The study in this paper can serve as an important reference for the development of deep model training and model deployment for heterogeneous IoT networks.\",\"PeriodicalId\":299985,\"journal\":{\"name\":\"EAI Endorsed Trans. Mob. Commun. Appl.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Mob. Commun. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetmca.v7i3.2899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Mob. Commun. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetmca.v7i3.2899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Model Training and Deployment in Heterogeneous IoT Networks
As a typical form of machines learning, deep learning has attracted much attention from researchers. It can independently construct (train) basic rules according to the sample data in the learning process. Especially in the field of machine vision, neural networks are usually trained by supervised learning, that is, by example data and predefined results of example data. In this paper, we firstly overview the current research progress on the deep model training and deployment on the heterogeneous Internet of Things (IoT) networks, by taking into account both the latency and energy consumption from various devices in the system. We then summarize the existing challenges on the model training and model deployment on the heterogeneous IoT devices. We further give some feasible solutions to solve the challenges on the model training and model deployment on the heterogeneous IoT devices. The study in this paper can serve as an important reference for the development of deep model training and model deployment for heterogeneous IoT networks.