准确性与效率:机器学习支持的物联网异常检测

Xin-Wen Wu, Yongtao Cao, Richard Dankwa
{"title":"准确性与效率:机器学习支持的物联网异常检测","authors":"Xin-Wen Wu, Yongtao Cao, Richard Dankwa","doi":"10.1109/IoTaIS56727.2022.9975889","DOIUrl":null,"url":null,"abstract":"Anomaly detection is an important security mechanism for the Internet of Things (IoT). Existing works have been focused on developing accurate anomaly detection models. However, due to the resource-constrained nature of IoT networks and the requirement of real-time security operation, cost efficient (regarding computational efficiency and memory-consumption efficiency) approaches for anomaly detection are highly desirable in IoT applications. In this paper, we investigated machine learning (ML) enabled anomaly detection models for the IoT with regard to multi-objective optimization (Pareto optimization) that minimizes the detection error, execution time, and memory consumption simultaneously. Making use of well-known datasets consisting of network traffic traces captured in an IoT environment, we studied a variety of machine learning algorithms through the world-class H2O AI platform. Our experimental results show that the Gradient Boosting Machine, Random Forest, and Deep Learning models are the most accurate and fastest anomaly detection models; the Gradient Boosting Machine and Random Forest are the most accurate and memory-efficient models. These ML models form the Pareto-optimal set of anomaly detection models. Our results can be used by the industry to facilitate their selection of ML models for anomaly detection on various IoT networks based on their security requirements and system constraints.","PeriodicalId":138894,"journal":{"name":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy vs Efficiency: Machine Learning Enabled Anomaly Detection on the Internet of Things\",\"authors\":\"Xin-Wen Wu, Yongtao Cao, Richard Dankwa\",\"doi\":\"10.1109/IoTaIS56727.2022.9975889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection is an important security mechanism for the Internet of Things (IoT). Existing works have been focused on developing accurate anomaly detection models. However, due to the resource-constrained nature of IoT networks and the requirement of real-time security operation, cost efficient (regarding computational efficiency and memory-consumption efficiency) approaches for anomaly detection are highly desirable in IoT applications. In this paper, we investigated machine learning (ML) enabled anomaly detection models for the IoT with regard to multi-objective optimization (Pareto optimization) that minimizes the detection error, execution time, and memory consumption simultaneously. Making use of well-known datasets consisting of network traffic traces captured in an IoT environment, we studied a variety of machine learning algorithms through the world-class H2O AI platform. Our experimental results show that the Gradient Boosting Machine, Random Forest, and Deep Learning models are the most accurate and fastest anomaly detection models; the Gradient Boosting Machine and Random Forest are the most accurate and memory-efficient models. These ML models form the Pareto-optimal set of anomaly detection models. Our results can be used by the industry to facilitate their selection of ML models for anomaly detection on various IoT networks based on their security requirements and system constraints.\",\"PeriodicalId\":138894,\"journal\":{\"name\":\"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IoTaIS56727.2022.9975889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTaIS56727.2022.9975889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异常检测是物联网的重要安全机制。现有的工作主要集中在开发准确的异常检测模型上。然而,由于物联网网络的资源约束性质和实时安全操作的要求,在物联网应用中,非常需要具有成本效益(关于计算效率和内存消耗效率)的异常检测方法。在本文中,我们研究了机器学习(ML)支持的物联网异常检测模型,涉及多目标优化(帕累托优化),该模型可以最大限度地减少检测错误、执行时间和内存消耗。利用在物联网环境中捕获的网络流量轨迹组成的知名数据集,我们通过世界一流的H2O AI平台研究了各种机器学习算法。实验结果表明,梯度增强机、随机森林和深度学习模型是最准确、最快的异常检测模型;梯度增强机和随机森林是最精确和内存效率最高的模型。这些机器学习模型构成了异常检测模型的帕累托最优集。我们的研究结果可以被业界用来根据他们的安全要求和系统约束来帮助他们选择机器学习模型,以便在各种物联网网络上进行异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy vs Efficiency: Machine Learning Enabled Anomaly Detection on the Internet of Things
Anomaly detection is an important security mechanism for the Internet of Things (IoT). Existing works have been focused on developing accurate anomaly detection models. However, due to the resource-constrained nature of IoT networks and the requirement of real-time security operation, cost efficient (regarding computational efficiency and memory-consumption efficiency) approaches for anomaly detection are highly desirable in IoT applications. In this paper, we investigated machine learning (ML) enabled anomaly detection models for the IoT with regard to multi-objective optimization (Pareto optimization) that minimizes the detection error, execution time, and memory consumption simultaneously. Making use of well-known datasets consisting of network traffic traces captured in an IoT environment, we studied a variety of machine learning algorithms through the world-class H2O AI platform. Our experimental results show that the Gradient Boosting Machine, Random Forest, and Deep Learning models are the most accurate and fastest anomaly detection models; the Gradient Boosting Machine and Random Forest are the most accurate and memory-efficient models. These ML models form the Pareto-optimal set of anomaly detection models. Our results can be used by the industry to facilitate their selection of ML models for anomaly detection on various IoT networks based on their security requirements and system constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信