基于b样条模糊神经网络的整车主动悬架在线自适应控制

S. Qamar, L. Khan, Z. Qamar
{"title":"基于b样条模糊神经网络的整车主动悬架在线自适应控制","authors":"S. Qamar, L. Khan, Z. Qamar","doi":"10.1109/FIT.2013.45","DOIUrl":null,"url":null,"abstract":"In this paper, the Adaptive B-spline Fuzzy Neural Network (ABFNN) based an active suspension system for full car is presented. The passive suspension system cannot reduce the vibrations which are transmitted from the road disturbances to the frame which affect the ride comfort and vehicle stability. The magnitude of these vibrations can be reduced by using ABFNN based an active suspension system. The ABFNN has ability to approximate the nonlinearity of the vehicle. By using B-spline membership function in the fuzzy neural network the approximation ability of the network is increased. The shape of B-spline membership function is adjusted self adaptively by changing control points during learning process. B-spline membership functions give a structure for choosing the shape of the fuzzy sets. The update parameters of ABFNN are trained by gradient-based technique that may fall into local minima during the learning process. The ABFNN is successfully applied to full car suspension model which reduces the seat, heave pitch and roll displacement of the vehicle. Simulation is based on the full car mathematical model by using MATLAB/SIMULINK. The simulation results show that the ABFNN control technique gives better results than passive and semi-active suspension systems.","PeriodicalId":179067,"journal":{"name":"2013 11th International Conference on Frontiers of Information Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Online Adaptive Full Car Active Suspension Control Using B-Spline Fuzzy-Neural Network\",\"authors\":\"S. Qamar, L. Khan, Z. Qamar\",\"doi\":\"10.1109/FIT.2013.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Adaptive B-spline Fuzzy Neural Network (ABFNN) based an active suspension system for full car is presented. The passive suspension system cannot reduce the vibrations which are transmitted from the road disturbances to the frame which affect the ride comfort and vehicle stability. The magnitude of these vibrations can be reduced by using ABFNN based an active suspension system. The ABFNN has ability to approximate the nonlinearity of the vehicle. By using B-spline membership function in the fuzzy neural network the approximation ability of the network is increased. The shape of B-spline membership function is adjusted self adaptively by changing control points during learning process. B-spline membership functions give a structure for choosing the shape of the fuzzy sets. The update parameters of ABFNN are trained by gradient-based technique that may fall into local minima during the learning process. The ABFNN is successfully applied to full car suspension model which reduces the seat, heave pitch and roll displacement of the vehicle. Simulation is based on the full car mathematical model by using MATLAB/SIMULINK. The simulation results show that the ABFNN control technique gives better results than passive and semi-active suspension systems.\",\"PeriodicalId\":179067,\"journal\":{\"name\":\"2013 11th International Conference on Frontiers of Information Technology\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Conference on Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT.2013.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于自适应b样条模糊神经网络(ABFNN)的整车主动悬架系统。被动悬架系统不能减小路面扰动传递给车架的振动,从而影响车辆的平顺性和稳定性。这些振动的大小可以通过使用基于ABFNN的主动悬架系统来减小。ABFNN具有近似车辆非线性的能力。在模糊神经网络中引入b样条隶属函数,提高了网络的逼近能力。在学习过程中,通过改变控制点自适应地调整b样条隶属函数的形状。b样条隶属函数给出了模糊集形状选择的结构。ABFNN的更新参数采用基于梯度的方法进行训练,在学习过程中可能会陷入局部极小值。将ABFNN成功地应用于整车悬架模型,降低了整车的座椅、纵摇和侧倾位移。仿真是基于整车数学模型,利用MATLAB/SIMULINK进行的。仿真结果表明,ABFNN控制技术比被动和半主动悬架系统具有更好的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Adaptive Full Car Active Suspension Control Using B-Spline Fuzzy-Neural Network
In this paper, the Adaptive B-spline Fuzzy Neural Network (ABFNN) based an active suspension system for full car is presented. The passive suspension system cannot reduce the vibrations which are transmitted from the road disturbances to the frame which affect the ride comfort and vehicle stability. The magnitude of these vibrations can be reduced by using ABFNN based an active suspension system. The ABFNN has ability to approximate the nonlinearity of the vehicle. By using B-spline membership function in the fuzzy neural network the approximation ability of the network is increased. The shape of B-spline membership function is adjusted self adaptively by changing control points during learning process. B-spline membership functions give a structure for choosing the shape of the fuzzy sets. The update parameters of ABFNN are trained by gradient-based technique that may fall into local minima during the learning process. The ABFNN is successfully applied to full car suspension model which reduces the seat, heave pitch and roll displacement of the vehicle. Simulation is based on the full car mathematical model by using MATLAB/SIMULINK. The simulation results show that the ABFNN control technique gives better results than passive and semi-active suspension systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信