Spread2RML

M. Schröder, Christian Jilek, A. Dengel
{"title":"Spread2RML","authors":"M. Schröder, Christian Jilek, A. Dengel","doi":"10.1145/3460210.3493544","DOIUrl":null,"url":null,"abstract":"The RDF Mapping Language (RML) allows to map semi-structured data to RDF knowledge graphs. Besides CSV, JSON and XML, this also includes the mapping of spreadsheet tables. Since spreadsheets have a complex data model and can become rather messy, their mapping creation tends to be very time consuming. In order to reduce such efforts, this paper presents Spread2RML which predicts RML mappings on messy spreadsheets. This is done with an extensible set of RML object map templates which are applied for each column based on heuristics. In our evaluation, three datasets are used ranging from very messy synthetic data to spreadsheets from data.gov which are less messy. We obtained first promising results especially with regard to our approach being fully automatic and dealing with rather messy data.","PeriodicalId":377331,"journal":{"name":"Proceedings of the 11th on Knowledge Capture Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spread2RML\",\"authors\":\"M. Schröder, Christian Jilek, A. Dengel\",\"doi\":\"10.1145/3460210.3493544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RDF Mapping Language (RML) allows to map semi-structured data to RDF knowledge graphs. Besides CSV, JSON and XML, this also includes the mapping of spreadsheet tables. Since spreadsheets have a complex data model and can become rather messy, their mapping creation tends to be very time consuming. In order to reduce such efforts, this paper presents Spread2RML which predicts RML mappings on messy spreadsheets. This is done with an extensible set of RML object map templates which are applied for each column based on heuristics. In our evaluation, three datasets are used ranging from very messy synthetic data to spreadsheets from data.gov which are less messy. We obtained first promising results especially with regard to our approach being fully automatic and dealing with rather messy data.\",\"PeriodicalId\":377331,\"journal\":{\"name\":\"Proceedings of the 11th on Knowledge Capture Conference\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th on Knowledge Capture Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460210.3493544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th on Knowledge Capture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460210.3493544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spread2RML
The RDF Mapping Language (RML) allows to map semi-structured data to RDF knowledge graphs. Besides CSV, JSON and XML, this also includes the mapping of spreadsheet tables. Since spreadsheets have a complex data model and can become rather messy, their mapping creation tends to be very time consuming. In order to reduce such efforts, this paper presents Spread2RML which predicts RML mappings on messy spreadsheets. This is done with an extensible set of RML object map templates which are applied for each column based on heuristics. In our evaluation, three datasets are used ranging from very messy synthetic data to spreadsheets from data.gov which are less messy. We obtained first promising results especially with regard to our approach being fully automatic and dealing with rather messy data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信