SkewTune:减轻mapreduce应用中的倾斜

YongChul Kwon, M. Balazinska, Bill Howe, J. Rolia
{"title":"SkewTune:减轻mapreduce应用中的倾斜","authors":"YongChul Kwon, M. Balazinska, Bill Howe, J. Rolia","doi":"10.1145/2213836.2213840","DOIUrl":null,"url":null,"abstract":"We present an automatic skew mitigation approach for user-defined MapReduce programs and present SkewTune, a system that implements this approach as a drop-in replacement for an existing MapReduce implementation. There are three key challenges: (a) require no extra input from the user yet work for all MapReduce applications, (b) be completely transparent, and (c) impose minimal overhead if there is no skew. The SkewTune approach addresses these challenges and works as follows: When a node in the cluster becomes idle, SkewTune identifies the task with the greatest expected remaining processing time. The unprocessed input data of this straggling task is then proactively repartitioned in a way that fully utilizes the nodes in the cluster and preserves the ordering of the input data so that the original output can be reconstructed by concatenation. We implement SkewTune as an extension to Hadoop and evaluate its effectiveness using several real applications. The results show that SkewTune can significantly reduce job runtime in the presence of skew and adds little to no overhead in the absence of skew.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"464","resultStr":"{\"title\":\"SkewTune: mitigating skew in mapreduce applications\",\"authors\":\"YongChul Kwon, M. Balazinska, Bill Howe, J. Rolia\",\"doi\":\"10.1145/2213836.2213840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an automatic skew mitigation approach for user-defined MapReduce programs and present SkewTune, a system that implements this approach as a drop-in replacement for an existing MapReduce implementation. There are three key challenges: (a) require no extra input from the user yet work for all MapReduce applications, (b) be completely transparent, and (c) impose minimal overhead if there is no skew. The SkewTune approach addresses these challenges and works as follows: When a node in the cluster becomes idle, SkewTune identifies the task with the greatest expected remaining processing time. The unprocessed input data of this straggling task is then proactively repartitioned in a way that fully utilizes the nodes in the cluster and preserves the ordering of the input data so that the original output can be reconstructed by concatenation. We implement SkewTune as an extension to Hadoop and evaluate its effectiveness using several real applications. The results show that SkewTune can significantly reduce job runtime in the presence of skew and adds little to no overhead in the absence of skew.\",\"PeriodicalId\":212616,\"journal\":{\"name\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"464\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213836.2213840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 464

摘要

我们为用户定义的MapReduce程序提出了一种自动倾斜缓解方法,并提出了SkewTune,这是一个实现这种方法的系统,可以替代现有的MapReduce实现。有三个关键的挑战:(a)不需要用户额外的输入,但对所有MapReduce应用程序都有效,(b)完全透明,(c)如果没有倾斜,则施加最小的开销。SkewTune方法解决了这些挑战,其工作原理如下:当集群中的一个节点空闲时,SkewTune识别具有最大预期剩余处理时间的任务。然后,这个分散任务的未处理输入数据被主动重新分区,这种方式充分利用了集群中的节点,并保留了输入数据的顺序,以便可以通过连接重建原始输出。我们将SkewTune作为Hadoop的扩展来实现,并使用几个实际应用来评估其有效性。结果表明,SkewTune可以在存在倾斜的情况下显着减少作业运行时间,并且在没有倾斜的情况下几乎没有增加开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SkewTune: mitigating skew in mapreduce applications
We present an automatic skew mitigation approach for user-defined MapReduce programs and present SkewTune, a system that implements this approach as a drop-in replacement for an existing MapReduce implementation. There are three key challenges: (a) require no extra input from the user yet work for all MapReduce applications, (b) be completely transparent, and (c) impose minimal overhead if there is no skew. The SkewTune approach addresses these challenges and works as follows: When a node in the cluster becomes idle, SkewTune identifies the task with the greatest expected remaining processing time. The unprocessed input data of this straggling task is then proactively repartitioned in a way that fully utilizes the nodes in the cluster and preserves the ordering of the input data so that the original output can be reconstructed by concatenation. We implement SkewTune as an extension to Hadoop and evaluate its effectiveness using several real applications. The results show that SkewTune can significantly reduce job runtime in the presence of skew and adds little to no overhead in the absence of skew.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信