F. Cerini, M. Ferrari, V. Ferrari, R. Ardito, B. de Masi, A. Russo, M. Urquia, M. Serzanti, P. Dell’Era
{"title":"具有位移传感的MEMS力微执行器用于力学生物学实验","authors":"F. Cerini, M. Ferrari, V. Ferrari, R. Ardito, B. de Masi, A. Russo, M. Urquia, M. Serzanti, P. Dell’Era","doi":"10.1109/AEIT.2015.7415224","DOIUrl":null,"url":null,"abstract":"This paper presents a Micro Electro-Mechanical System (MEMS) that performs electrostatic force actuation and capacitive microdisplacement sensing in the same chip. By driving the actuator with a given voltage, a known force can be applied to a microsample under test by using a silicon probe tip, while the obtained displacement is measured. This allows to extract the mechanical properties of the microsample entirely on chip, and to derive its force-displacement curve without external equipment. The proposed device is intended for mechanobiology experiments, where the microsample is made of biological tissues or cells. The device generates a force in the order of few micronewtons and a maximum displacement of 1.8 μm can be measured.","PeriodicalId":368119,"journal":{"name":"2015 AEIT International Annual Conference (AEIT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MEMS force microactuator with displacement sensing for mechanobiology experiments\",\"authors\":\"F. Cerini, M. Ferrari, V. Ferrari, R. Ardito, B. de Masi, A. Russo, M. Urquia, M. Serzanti, P. Dell’Era\",\"doi\":\"10.1109/AEIT.2015.7415224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Micro Electro-Mechanical System (MEMS) that performs electrostatic force actuation and capacitive microdisplacement sensing in the same chip. By driving the actuator with a given voltage, a known force can be applied to a microsample under test by using a silicon probe tip, while the obtained displacement is measured. This allows to extract the mechanical properties of the microsample entirely on chip, and to derive its force-displacement curve without external equipment. The proposed device is intended for mechanobiology experiments, where the microsample is made of biological tissues or cells. The device generates a force in the order of few micronewtons and a maximum displacement of 1.8 μm can be measured.\",\"PeriodicalId\":368119,\"journal\":{\"name\":\"2015 AEIT International Annual Conference (AEIT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEIT.2015.7415224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEIT.2015.7415224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MEMS force microactuator with displacement sensing for mechanobiology experiments
This paper presents a Micro Electro-Mechanical System (MEMS) that performs electrostatic force actuation and capacitive microdisplacement sensing in the same chip. By driving the actuator with a given voltage, a known force can be applied to a microsample under test by using a silicon probe tip, while the obtained displacement is measured. This allows to extract the mechanical properties of the microsample entirely on chip, and to derive its force-displacement curve without external equipment. The proposed device is intended for mechanobiology experiments, where the microsample is made of biological tissues or cells. The device generates a force in the order of few micronewtons and a maximum displacement of 1.8 μm can be measured.