基于变异函数的噪声方差估计及其在核回归中的应用

K. Pelckmans, J. Brabanter, J. Suykens, B. Moor
{"title":"基于变异函数的噪声方差估计及其在核回归中的应用","authors":"K. Pelckmans, J. Brabanter, J. Suykens, B. Moor","doi":"10.1109/NNSP.2003.1318019","DOIUrl":null,"url":null,"abstract":"Model-free estimates of the noise variance are important for doing model selection and setting tuning parameters. In this paper a data representation is discussed which leads to such an estimator suitable for multi-dimensional input data. The visual representation, called the differogram cloud, is based on the 2-norm of the differences of the input- and output-data. A corrected way to estimate the variance of the noise on the output measurement and a (tuning) parameter free version are derived. Connections with other existing variance estimators and numerical simulations indicate convergence of the estimators. As a special case, this paper focuses on model selection and tuning parameters of least squares support vector machines [J. Suykens, et al., 2002].","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Variogram based noise variance estimation and its use in kernel based regression\",\"authors\":\"K. Pelckmans, J. Brabanter, J. Suykens, B. Moor\",\"doi\":\"10.1109/NNSP.2003.1318019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-free estimates of the noise variance are important for doing model selection and setting tuning parameters. In this paper a data representation is discussed which leads to such an estimator suitable for multi-dimensional input data. The visual representation, called the differogram cloud, is based on the 2-norm of the differences of the input- and output-data. A corrected way to estimate the variance of the noise on the output measurement and a (tuning) parameter free version are derived. Connections with other existing variance estimators and numerical simulations indicate convergence of the estimators. As a special case, this paper focuses on model selection and tuning parameters of least squares support vector machines [J. Suykens, et al., 2002].\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无模型噪声方差估计对于模型选择和调优参数设置非常重要。本文讨论了一种适合于多维输入数据的估计器的数据表示方法。视觉表示称为差图云,是基于输入和输出数据差异的2范数。导出了一种估计输出测量噪声方差的修正方法和一个(调谐)参数自由版本。与其他已有方差估计量的联系和数值模拟表明了估计量的收敛性。作为一种特例,本文重点研究了最小二乘支持向量机的模型选择和参数整定[J]。Suykens等,2002]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variogram based noise variance estimation and its use in kernel based regression
Model-free estimates of the noise variance are important for doing model selection and setting tuning parameters. In this paper a data representation is discussed which leads to such an estimator suitable for multi-dimensional input data. The visual representation, called the differogram cloud, is based on the 2-norm of the differences of the input- and output-data. A corrected way to estimate the variance of the noise on the output measurement and a (tuning) parameter free version are derived. Connections with other existing variance estimators and numerical simulations indicate convergence of the estimators. As a special case, this paper focuses on model selection and tuning parameters of least squares support vector machines [J. Suykens, et al., 2002].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信