基于嵌入式GPU的混沌神经网络并行实现

Zhongda Liu, Takeshi Murakami, Satoshi Kawamura, H. Yoshida
{"title":"基于嵌入式GPU的混沌神经网络并行实现","authors":"Zhongda Liu, Takeshi Murakami, Satoshi Kawamura, H. Yoshida","doi":"10.1109/ICAwST.2019.8923383","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) has become ubiquitous, and the need for higher information security is increasing. The CPU usage cost of IoT devices to process information security tasks is large. In the present paper, we study a parallel implementation of chaos neural networks for an embedded GPU using the Open Computing Language (OpenCL). We evaluate this parallel implementation, and the results indicate that it can extract a pseudo-random number series at high speed and with low CPU usage. This implementation is remarkably faster than the implementation in the CPU and is approximately 49% faster than AES in counter mode. The rate of pseudo-random number generation is higher than 2.1 Gbps when using 100 compute units of a GPU. Applying a stream cipher is sufficient even for Internet communication. Extracted pseudo-random number series are independent, have fine randomness properties, and can merge into one series applied to a stream cipher.","PeriodicalId":156538,"journal":{"name":"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parallel Implementation of Chaos Neural Networks for an Embedded GPU\",\"authors\":\"Zhongda Liu, Takeshi Murakami, Satoshi Kawamura, H. Yoshida\",\"doi\":\"10.1109/ICAwST.2019.8923383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) has become ubiquitous, and the need for higher information security is increasing. The CPU usage cost of IoT devices to process information security tasks is large. In the present paper, we study a parallel implementation of chaos neural networks for an embedded GPU using the Open Computing Language (OpenCL). We evaluate this parallel implementation, and the results indicate that it can extract a pseudo-random number series at high speed and with low CPU usage. This implementation is remarkably faster than the implementation in the CPU and is approximately 49% faster than AES in counter mode. The rate of pseudo-random number generation is higher than 2.1 Gbps when using 100 compute units of a GPU. Applying a stream cipher is sufficient even for Internet communication. Extracted pseudo-random number series are independent, have fine randomness properties, and can merge into one series applied to a stream cipher.\",\"PeriodicalId\":156538,\"journal\":{\"name\":\"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAwST.2019.8923383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAwST.2019.8923383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

物联网(IoT)已经无处不在,对更高信息安全的需求也在不断增加。物联网设备处理信息安全任务的CPU占用成本较大。在本文中,我们研究了一种基于开放计算语言(OpenCL)的嵌入式GPU的混沌神经网络并行实现。我们对这种并行实现进行了评估,结果表明它可以在高速和低CPU占用的情况下提取伪随机数序列。此实现比CPU中的实现要快得多,并且比计数器模式下的AES快大约49%。当GPU使用100个计算单元时,伪随机数生成速率大于2.1 Gbps。即使对于Internet通信,使用流密码也足够了。提取的伪随机数序列是独立的,具有良好的随机性,可以合并成一个序列应用于流密码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Implementation of Chaos Neural Networks for an Embedded GPU
The Internet of Things (IoT) has become ubiquitous, and the need for higher information security is increasing. The CPU usage cost of IoT devices to process information security tasks is large. In the present paper, we study a parallel implementation of chaos neural networks for an embedded GPU using the Open Computing Language (OpenCL). We evaluate this parallel implementation, and the results indicate that it can extract a pseudo-random number series at high speed and with low CPU usage. This implementation is remarkably faster than the implementation in the CPU and is approximately 49% faster than AES in counter mode. The rate of pseudo-random number generation is higher than 2.1 Gbps when using 100 compute units of a GPU. Applying a stream cipher is sufficient even for Internet communication. Extracted pseudo-random number series are independent, have fine randomness properties, and can merge into one series applied to a stream cipher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信