{"title":"辐射硬电路设计:触发器和SRAM","authors":"G. Kaushal, S. Rathod, C. Raghuram, S. Dasgupta","doi":"10.1049/pbcs073g_ch12","DOIUrl":null,"url":null,"abstract":"As the transistor size scales down exponentially to nanometric dimensions, the susceptibility of electronic circuits to radiation increases drastically. Protection against the radiation is important in the field of biomedical, aerospace, communication and computing. Flip-flops (FFs) and static random access memories (SRAMs) are used to store the data in many critical applications where their performance must be resilient to radiation exposures to guarantee reliability. Therefore development of resilient FFs and SRAM are the challenging and demanding problems. In this chapter, different approaches are analysed to design these radiation hard circuits.","PeriodicalId":417544,"journal":{"name":"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Radiation hard circuit design: flip-flop and SRAM\",\"authors\":\"G. Kaushal, S. Rathod, C. Raghuram, S. Dasgupta\",\"doi\":\"10.1049/pbcs073g_ch12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the transistor size scales down exponentially to nanometric dimensions, the susceptibility of electronic circuits to radiation increases drastically. Protection against the radiation is important in the field of biomedical, aerospace, communication and computing. Flip-flops (FFs) and static random access memories (SRAMs) are used to store the data in many critical applications where their performance must be resilient to radiation exposures to guarantee reliability. Therefore development of resilient FFs and SRAM are the challenging and demanding problems. In this chapter, different approaches are analysed to design these radiation hard circuits.\",\"PeriodicalId\":417544,\"journal\":{\"name\":\"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/pbcs073g_ch12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/pbcs073g_ch12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As the transistor size scales down exponentially to nanometric dimensions, the susceptibility of electronic circuits to radiation increases drastically. Protection against the radiation is important in the field of biomedical, aerospace, communication and computing. Flip-flops (FFs) and static random access memories (SRAMs) are used to store the data in many critical applications where their performance must be resilient to radiation exposures to guarantee reliability. Therefore development of resilient FFs and SRAM are the challenging and demanding problems. In this chapter, different approaches are analysed to design these radiation hard circuits.