为智能农业实现低功耗传感器的上下文感知调谐

S. Sindaco, S. Nanni, Cristiano Aguzzi, L. Roffia, Tullio Salmon Cinotti
{"title":"为智能农业实现低功耗传感器的上下文感知调谐","authors":"S. Sindaco, S. Nanni, Cristiano Aguzzi, L. Roffia, Tullio Salmon Cinotti","doi":"10.1109/MetroAgriFor50201.2020.9277635","DOIUrl":null,"url":null,"abstract":"This paper describes an application for the context aware tuning of the data rate of a battery powered LoRaWAN multi-sensor node equipped with sensors measuring soil features like water content, temperature, conductivity, moisture and water table depth. The application aims at saving as much power as possible, granting at the same time the detection and accurate profiling of events localized in time and space (e.g., due to sudden heavy rain). The tuning rules are based on the interplay between the context heterogeneous actors (sensor data, forecasts, current season, irrigation requests) mediated by a Linked Data distribution platform interconnected to multiple private and public networks. An interoperable application is provided, whose components can be easily extended and reused.","PeriodicalId":124961,"journal":{"name":"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling Context Aware Tuning of Low Power Sensors for Smart Agriculture\",\"authors\":\"S. Sindaco, S. Nanni, Cristiano Aguzzi, L. Roffia, Tullio Salmon Cinotti\",\"doi\":\"10.1109/MetroAgriFor50201.2020.9277635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an application for the context aware tuning of the data rate of a battery powered LoRaWAN multi-sensor node equipped with sensors measuring soil features like water content, temperature, conductivity, moisture and water table depth. The application aims at saving as much power as possible, granting at the same time the detection and accurate profiling of events localized in time and space (e.g., due to sudden heavy rain). The tuning rules are based on the interplay between the context heterogeneous actors (sensor data, forecasts, current season, irrigation requests) mediated by a Linked Data distribution platform interconnected to multiple private and public networks. An interoperable application is provided, whose components can be easily extended and reused.\",\"PeriodicalId\":124961,\"journal\":{\"name\":\"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAgriFor50201.2020.9277635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAgriFor50201.2020.9277635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种应用程序,用于对电池供电的LoRaWAN多传感器节点的数据速率进行上下文感知调谐,该节点配备了测量土壤特征(如含水量、温度、电导率、湿度和地下水位深度)的传感器。该应用程序旨在尽可能地节省功率,同时授予在时间和空间上局部事件的检测和准确分析(例如,由于突然的大雨)。调优规则基于上下文异构参与者(传感器数据、预测、当前季节、灌溉请求)之间的相互作用,由连接到多个私有和公共网络的关联数据分发平台调解。提供了可互操作的应用程序,其组件可以很容易地扩展和重用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Context Aware Tuning of Low Power Sensors for Smart Agriculture
This paper describes an application for the context aware tuning of the data rate of a battery powered LoRaWAN multi-sensor node equipped with sensors measuring soil features like water content, temperature, conductivity, moisture and water table depth. The application aims at saving as much power as possible, granting at the same time the detection and accurate profiling of events localized in time and space (e.g., due to sudden heavy rain). The tuning rules are based on the interplay between the context heterogeneous actors (sensor data, forecasts, current season, irrigation requests) mediated by a Linked Data distribution platform interconnected to multiple private and public networks. An interoperable application is provided, whose components can be easily extended and reused.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信