基于自适应核模糊c均值聚类和核主成分分析的电力变压器异常检测

K. Tang, Tingzhang Liu, Xiaoye Xi, Yue Lin, Jianfei Zhao
{"title":"基于自适应核模糊c均值聚类和核主成分分析的电力变压器异常检测","authors":"K. Tang, Tingzhang Liu, Xiaoye Xi, Yue Lin, Jianfei Zhao","doi":"10.1109/ANZCC.2018.8606615","DOIUrl":null,"url":null,"abstract":"In this paper, a data-driven power transformer anomaly detection method is presented. For transformers with multiple working states and nonlinearity of data, adaptive kernel fuzzy C-means clustering (KFCM) algorithm is used to cluster sample data, each class corresponds to a working state. Then, the kernel principal component analysis (KPCA) is used to obtain projection matrices and anomaly detection limits of various classes. A method for online update of sample data is designed in this paper. Finally, the measured data of the power transformer is used for experiment, and the results are compared with the results obtained by using the conventional KPCA algorithm. The experimental results prove the correctness and effectiveness of the method in this paper.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power Transformer Anomaly Detection Based on Adaptive Kernel Fuzzy C-Means Clustering and Kernel Principal Component Analysis\",\"authors\":\"K. Tang, Tingzhang Liu, Xiaoye Xi, Yue Lin, Jianfei Zhao\",\"doi\":\"10.1109/ANZCC.2018.8606615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a data-driven power transformer anomaly detection method is presented. For transformers with multiple working states and nonlinearity of data, adaptive kernel fuzzy C-means clustering (KFCM) algorithm is used to cluster sample data, each class corresponds to a working state. Then, the kernel principal component analysis (KPCA) is used to obtain projection matrices and anomaly detection limits of various classes. A method for online update of sample data is designed in this paper. Finally, the measured data of the power transformer is used for experiment, and the results are compared with the results obtained by using the conventional KPCA algorithm. The experimental results prove the correctness and effectiveness of the method in this paper.\",\"PeriodicalId\":358801,\"journal\":{\"name\":\"2018 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC.2018.8606615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种数据驱动的电力变压器异常检测方法。对于具有多种工作状态和数据非线性的变压器,采用自适应核模糊c均值聚类(KFCM)算法对样本数据进行聚类,每一类对应一个工作状态。然后,利用核主成分分析(KPCA)得到投影矩阵和各类异常检测限;本文设计了一种在线更新样本数据的方法。最后,利用电力变压器的实测数据进行实验,并将实验结果与传统KPCA算法的结果进行比较。实验结果证明了本文方法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Transformer Anomaly Detection Based on Adaptive Kernel Fuzzy C-Means Clustering and Kernel Principal Component Analysis
In this paper, a data-driven power transformer anomaly detection method is presented. For transformers with multiple working states and nonlinearity of data, adaptive kernel fuzzy C-means clustering (KFCM) algorithm is used to cluster sample data, each class corresponds to a working state. Then, the kernel principal component analysis (KPCA) is used to obtain projection matrices and anomaly detection limits of various classes. A method for online update of sample data is designed in this paper. Finally, the measured data of the power transformer is used for experiment, and the results are compared with the results obtained by using the conventional KPCA algorithm. The experimental results prove the correctness and effectiveness of the method in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信