实时视频中的目标检测和跟踪

Christian R. Llano, Yuan Ren, N. I. Shaikh
{"title":"实时视频中的目标检测和跟踪","authors":"Christian R. Llano, Yuan Ren, N. I. Shaikh","doi":"10.4018/IJISSS.2019040101","DOIUrl":null,"url":null,"abstract":"Object and human tracking in streaming videos are one of the most challenging problems in vision computing. In this article, we review some relevant machine learning algorithms and techniques for human identification and tracking in videos. We provide details on metrics and methods used in the computer vision literature for monitoring and propose a state-space representation of the object tracking problem. A proof of concept implementation of the state-space based object tracking using particle filters is presented as well. The proposed approach enables tracking objects/humans in a video, including foreground/background separation for object movement detection.","PeriodicalId":151306,"journal":{"name":"Int. J. Inf. Syst. Serv. Sect.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object Detection and Tracking in Real Time Videos\",\"authors\":\"Christian R. Llano, Yuan Ren, N. I. Shaikh\",\"doi\":\"10.4018/IJISSS.2019040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object and human tracking in streaming videos are one of the most challenging problems in vision computing. In this article, we review some relevant machine learning algorithms and techniques for human identification and tracking in videos. We provide details on metrics and methods used in the computer vision literature for monitoring and propose a state-space representation of the object tracking problem. A proof of concept implementation of the state-space based object tracking using particle filters is presented as well. The proposed approach enables tracking objects/humans in a video, including foreground/background separation for object movement detection.\",\"PeriodicalId\":151306,\"journal\":{\"name\":\"Int. J. Inf. Syst. Serv. Sect.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Syst. Serv. Sect.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJISSS.2019040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Syst. Serv. Sect.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJISSS.2019040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

流媒体视频中的物体和人的跟踪是视觉计算中最具挑战性的问题之一。在本文中,我们回顾了一些相关的机器学习算法和技术,用于视频中的人类识别和跟踪。我们详细介绍了计算机视觉文献中用于监控的度量和方法,并提出了对象跟踪问题的状态空间表示。最后给出了一种基于状态空间的粒子滤波目标跟踪的概念验证。所提出的方法能够跟踪视频中的物体/人,包括用于物体运动检测的前景/背景分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Detection and Tracking in Real Time Videos
Object and human tracking in streaming videos are one of the most challenging problems in vision computing. In this article, we review some relevant machine learning algorithms and techniques for human identification and tracking in videos. We provide details on metrics and methods used in the computer vision literature for monitoring and propose a state-space representation of the object tracking problem. A proof of concept implementation of the state-space based object tracking using particle filters is presented as well. The proposed approach enables tracking objects/humans in a video, including foreground/background separation for object movement detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信