认知无线电网络中空间复用的分布式机会频谱接入

Yi Zhang, Wee Peng Tay, K. H. Li, M. Esseghir, D. Gaïti
{"title":"认知无线电网络中空间复用的分布式机会频谱接入","authors":"Yi Zhang, Wee Peng Tay, K. H. Li, M. Esseghir, D. Gaïti","doi":"10.1109/GlobalSIP.2014.7032321","DOIUrl":null,"url":null,"abstract":"We formulate and study a multi-user multi-armed bandit (MAB) problem for opportunistic spectrum access (OSA) that exploits the temporal-spatial reuse of PU channels so that SUs who do not interfere with each other can make use of the same PU channel. We propose a three-stage distributed channel allocation policy for OSA, where SUs collaboratively find an optimal channel access grouping, and independently learn the channel availability statistics to maximize the total expected number of successful SU transmissions. We adopt a distributed synchronous greedy graph coloring algorithm to cluster SUs into maximal independent sets, and a distributed average consensus algorithm to learn the sizes of the independent sets, with SUs belonging to a larger set being assigned a smaller access rank. Each SU then independently learns the PU channel statistics using a revised ε-greedy policy based on its assigned access rank. We provide the theoretical upper bound for the regret, and simulations suggest that our proposed policy has a significantly smaller regret than a random access policy and an adaptive randomization policy.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distributed opportunistic spectrum access with spatial reuse in cognitive radio networks\",\"authors\":\"Yi Zhang, Wee Peng Tay, K. H. Li, M. Esseghir, D. Gaïti\",\"doi\":\"10.1109/GlobalSIP.2014.7032321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate and study a multi-user multi-armed bandit (MAB) problem for opportunistic spectrum access (OSA) that exploits the temporal-spatial reuse of PU channels so that SUs who do not interfere with each other can make use of the same PU channel. We propose a three-stage distributed channel allocation policy for OSA, where SUs collaboratively find an optimal channel access grouping, and independently learn the channel availability statistics to maximize the total expected number of successful SU transmissions. We adopt a distributed synchronous greedy graph coloring algorithm to cluster SUs into maximal independent sets, and a distributed average consensus algorithm to learn the sizes of the independent sets, with SUs belonging to a larger set being assigned a smaller access rank. Each SU then independently learns the PU channel statistics using a revised ε-greedy policy based on its assigned access rank. We provide the theoretical upper bound for the regret, and simulations suggest that our proposed policy has a significantly smaller regret than a random access policy and an adaptive randomization policy.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们制定并研究了机会频谱接入(OSA)的多用户多臂强盗(MAB)问题,该问题利用PU信道的时空重用,使互不干扰的su可以使用相同的PU信道。我们提出了一种三阶段的OSA分布式信道分配策略,其中SU协作找到最优的信道访问分组,并独立学习信道可用性统计数据,以最大化成功传输的SU总数。我们采用分布式同步贪婪图着色算法将SUs聚为最大独立集,并采用分布式平均一致性算法学习独立集的大小,其中属于较大集的su被分配较小的访问秩。然后,每个SU根据其分配的访问等级,使用修改后的ε-贪心策略独立学习PU通道统计信息。我们提供了后悔的理论上限,仿真结果表明,我们提出的策略的后悔明显小于随机访问策略和自适应随机化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed opportunistic spectrum access with spatial reuse in cognitive radio networks
We formulate and study a multi-user multi-armed bandit (MAB) problem for opportunistic spectrum access (OSA) that exploits the temporal-spatial reuse of PU channels so that SUs who do not interfere with each other can make use of the same PU channel. We propose a three-stage distributed channel allocation policy for OSA, where SUs collaboratively find an optimal channel access grouping, and independently learn the channel availability statistics to maximize the total expected number of successful SU transmissions. We adopt a distributed synchronous greedy graph coloring algorithm to cluster SUs into maximal independent sets, and a distributed average consensus algorithm to learn the sizes of the independent sets, with SUs belonging to a larger set being assigned a smaller access rank. Each SU then independently learns the PU channel statistics using a revised ε-greedy policy based on its assigned access rank. We provide the theoretical upper bound for the regret, and simulations suggest that our proposed policy has a significantly smaller regret than a random access policy and an adaptive randomization policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信