相对时序验证计算干扰约束的自动综合

Yang Xu, K. Stevens
{"title":"相对时序验证计算干扰约束的自动综合","authors":"Yang Xu, K. Stevens","doi":"10.1109/ICCD.2009.5413183","DOIUrl":null,"url":null,"abstract":"Asynchronous sequential circuit or protocol design requires formal verification to ensure correct behavior under all operating conditions. However, most asynchronous circuits or protocols cannot be proven conformant to a specification without adding timing assumptions. Relative Timing (RT) is an approach to model and verify circuits and protocols that require timing assumptions to operate correctly. The process of creating path-based RT constraints has previously been done by hand with the aid of a formal verification engine. This time consuming and error prone method vastly restricts the application of RT and the capability to implement circuits and protocols. This paper describes an algorithm for automatic generation of RT constraints based on signal traces generated from a formal verification (FV) engine that supports relative timing constraints. This algorithm has been implemented in a CAD tool called Automatic Relative Timing Identifier based on Signal Traces (ARTIST) which has been embedded into the FV engine. A set of asynchronous and clocked designs and protocols have been verified and proven to be hazard-free with the RT constraints generated by ARTIST which would have taken months to perform by hand. A comparison of RT constraints between hand-generated and ARTIST generated constraints is also described in terms of efficiency and quality.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Automatic synthesis of computation interference constraints for relative timing verification\",\"authors\":\"Yang Xu, K. Stevens\",\"doi\":\"10.1109/ICCD.2009.5413183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asynchronous sequential circuit or protocol design requires formal verification to ensure correct behavior under all operating conditions. However, most asynchronous circuits or protocols cannot be proven conformant to a specification without adding timing assumptions. Relative Timing (RT) is an approach to model and verify circuits and protocols that require timing assumptions to operate correctly. The process of creating path-based RT constraints has previously been done by hand with the aid of a formal verification engine. This time consuming and error prone method vastly restricts the application of RT and the capability to implement circuits and protocols. This paper describes an algorithm for automatic generation of RT constraints based on signal traces generated from a formal verification (FV) engine that supports relative timing constraints. This algorithm has been implemented in a CAD tool called Automatic Relative Timing Identifier based on Signal Traces (ARTIST) which has been embedded into the FV engine. A set of asynchronous and clocked designs and protocols have been verified and proven to be hazard-free with the RT constraints generated by ARTIST which would have taken months to perform by hand. A comparison of RT constraints between hand-generated and ARTIST generated constraints is also described in terms of efficiency and quality.\",\"PeriodicalId\":256908,\"journal\":{\"name\":\"2009 IEEE International Conference on Computer Design\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2009.5413183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

异步顺序电路或协议设计需要正式验证,以确保在所有操作条件下的正确行为。然而,如果不添加时序假设,大多数异步电路或协议都无法证明符合规范。相对时序(RT)是一种建模和验证电路和协议的方法,这些电路和协议需要时序假设才能正确运行。创建基于路径的RT约束的过程以前是在形式化验证引擎的帮助下手工完成的。这种耗时且容易出错的方法极大地限制了RT的应用以及实现电路和协议的能力。本文描述了一种基于支持相对时序约束的形式验证(FV)引擎生成的信号轨迹自动生成RT约束的算法。该算法已在一个名为基于信号轨迹的自动相对时序识别器(art)的CAD工具中实现,该工具已嵌入到FV引擎中。一组异步和定时设计和协议已经经过验证,并被证明是无危险的,由艺术家生成的RT约束将花费数月的时间手工执行。在效率和质量方面还描述了手工生成和艺术家生成约束之间的RT约束的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic synthesis of computation interference constraints for relative timing verification
Asynchronous sequential circuit or protocol design requires formal verification to ensure correct behavior under all operating conditions. However, most asynchronous circuits or protocols cannot be proven conformant to a specification without adding timing assumptions. Relative Timing (RT) is an approach to model and verify circuits and protocols that require timing assumptions to operate correctly. The process of creating path-based RT constraints has previously been done by hand with the aid of a formal verification engine. This time consuming and error prone method vastly restricts the application of RT and the capability to implement circuits and protocols. This paper describes an algorithm for automatic generation of RT constraints based on signal traces generated from a formal verification (FV) engine that supports relative timing constraints. This algorithm has been implemented in a CAD tool called Automatic Relative Timing Identifier based on Signal Traces (ARTIST) which has been embedded into the FV engine. A set of asynchronous and clocked designs and protocols have been verified and proven to be hazard-free with the RT constraints generated by ARTIST which would have taken months to perform by hand. A comparison of RT constraints between hand-generated and ARTIST generated constraints is also described in terms of efficiency and quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信