采用新的能量模型分析MAC和网络参数对异步IEEE 802.15.4多跳无线网络生存期的影响

Raja Vara Prasad Yerra, P. Rajalakshmi
{"title":"采用新的能量模型分析MAC和网络参数对异步IEEE 802.15.4多跳无线网络生存期的影响","authors":"Raja Vara Prasad Yerra, P. Rajalakshmi","doi":"10.1109/ANTS.2014.7057266","DOIUrl":null,"url":null,"abstract":"Design of energy efficient wireless networks is the primary research goal for evolving billion device applications like Internet of Things (IoT), smart grids and Cyber Physical Systems (CPS). Energy efficient models can reduce megawatts of power through out globe thereby reducing carbon foot print by improving overall network lifetime of large scale networks. Recent advances in physical layer have optimized energy consumption of IEEE 802.15.4 Physical layer, but energy efficiency of MAC and network layers is also essential to realise Green wireless networks. Though anycast multi-hop communication is initiated by many recent researchers by obtaining reliability, delay and energy expressions, still there is no model that captures relay nodes state wise behaviour effectively. In this paper a new energy model with 3-dimensional Markov MAC model with generalized any cast routing and state behaviour is proposed and developed for asynchronous wireless ad hoc networks. Proposed state behaviour of node model has consideration of MAC and network parameters like minimum backoff exponent, maximum backoff stages and retries along with network parameters like packet length, wake up rate, Sleep, Idle-Listen, Active-Tx and Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) states. Results show that total energy of derived model depends on many network and MAC parameters. Affect of most of the considered parameters are analysed with simulation results. Total energy of the multi-hop network reduced to 25% with variation in minimum backoff exponent and increased by 45% with increase in packet length. It is observed that derived analytical energy model better fits with most of the parameters that affects energy.","PeriodicalId":116048,"journal":{"name":"IEEE ANTS","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Novel energy model to analyze the effect of MAC and network parameters on asynchronous IEEE 802.15.4 multi-hop wireless networks lifetime\",\"authors\":\"Raja Vara Prasad Yerra, P. Rajalakshmi\",\"doi\":\"10.1109/ANTS.2014.7057266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design of energy efficient wireless networks is the primary research goal for evolving billion device applications like Internet of Things (IoT), smart grids and Cyber Physical Systems (CPS). Energy efficient models can reduce megawatts of power through out globe thereby reducing carbon foot print by improving overall network lifetime of large scale networks. Recent advances in physical layer have optimized energy consumption of IEEE 802.15.4 Physical layer, but energy efficiency of MAC and network layers is also essential to realise Green wireless networks. Though anycast multi-hop communication is initiated by many recent researchers by obtaining reliability, delay and energy expressions, still there is no model that captures relay nodes state wise behaviour effectively. In this paper a new energy model with 3-dimensional Markov MAC model with generalized any cast routing and state behaviour is proposed and developed for asynchronous wireless ad hoc networks. Proposed state behaviour of node model has consideration of MAC and network parameters like minimum backoff exponent, maximum backoff stages and retries along with network parameters like packet length, wake up rate, Sleep, Idle-Listen, Active-Tx and Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) states. Results show that total energy of derived model depends on many network and MAC parameters. Affect of most of the considered parameters are analysed with simulation results. Total energy of the multi-hop network reduced to 25% with variation in minimum backoff exponent and increased by 45% with increase in packet length. It is observed that derived analytical energy model better fits with most of the parameters that affects energy.\",\"PeriodicalId\":116048,\"journal\":{\"name\":\"IEEE ANTS\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ANTS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTS.2014.7057266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ANTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2014.7057266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel energy model to analyze the effect of MAC and network parameters on asynchronous IEEE 802.15.4 multi-hop wireless networks lifetime
Design of energy efficient wireless networks is the primary research goal for evolving billion device applications like Internet of Things (IoT), smart grids and Cyber Physical Systems (CPS). Energy efficient models can reduce megawatts of power through out globe thereby reducing carbon foot print by improving overall network lifetime of large scale networks. Recent advances in physical layer have optimized energy consumption of IEEE 802.15.4 Physical layer, but energy efficiency of MAC and network layers is also essential to realise Green wireless networks. Though anycast multi-hop communication is initiated by many recent researchers by obtaining reliability, delay and energy expressions, still there is no model that captures relay nodes state wise behaviour effectively. In this paper a new energy model with 3-dimensional Markov MAC model with generalized any cast routing and state behaviour is proposed and developed for asynchronous wireless ad hoc networks. Proposed state behaviour of node model has consideration of MAC and network parameters like minimum backoff exponent, maximum backoff stages and retries along with network parameters like packet length, wake up rate, Sleep, Idle-Listen, Active-Tx and Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) states. Results show that total energy of derived model depends on many network and MAC parameters. Affect of most of the considered parameters are analysed with simulation results. Total energy of the multi-hop network reduced to 25% with variation in minimum backoff exponent and increased by 45% with increase in packet length. It is observed that derived analytical energy model better fits with most of the parameters that affects energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信