基于pq理论的单相电网光伏电源无锁相环有功/无功控制

Mehmet Buyuk
{"title":"基于pq理论的单相电网光伏电源无锁相环有功/无功控制","authors":"Mehmet Buyuk","doi":"10.36222/ejt.1129083","DOIUrl":null,"url":null,"abstract":"Converter systems are applied to manage active/reactive power control of photovoltaic (PV) source during integration with the electric grid system. The control algorithm of the conventional converter system consists of a reference generation unit, a dc-link voltage control loop, two power control loops and a phase lock loop (PLL) system. PLL unit is used to lock in phase angle of the electric grid, and to perform the coordinate transformation for calculations of the active/reactive powers. However, the control algorithm has a slow dynamic response because of utilisation of a PLL structure. In addition, additional complex mathematical computations are required with the use of a PLL algorithm. Furthermore, the interaction of the PLL and the power control loops may lead power oscillation problems under weak grid, and also result in instability of the PV system. In this study, to avoid the aforementioned issues and to enhance the power flow capability of the grid-connected PV panels, a PLL-less control algorithm in pq-theory is studied for the active/reactive power management and the grid synchronization. In addition, the mathematical formulations of the current control algorithm are presented in detail. To show the effectiveness of the PLL-less controller, a PV system model with using real PV panel groups is designed and constructed in a simulation environment. The proposed control method is tested under various operation cases such as dynamic environmental conditions, reactive power support and voltage variations. The proposed method shows efficient performance under applications of the different operation situations.","PeriodicalId":413929,"journal":{"name":"European Journal of Technic","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLL-Less Active/Reactive Power Control of Photovoltaic Energy Source with Applying pq-Theory in Single-Phase Grid System\",\"authors\":\"Mehmet Buyuk\",\"doi\":\"10.36222/ejt.1129083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Converter systems are applied to manage active/reactive power control of photovoltaic (PV) source during integration with the electric grid system. The control algorithm of the conventional converter system consists of a reference generation unit, a dc-link voltage control loop, two power control loops and a phase lock loop (PLL) system. PLL unit is used to lock in phase angle of the electric grid, and to perform the coordinate transformation for calculations of the active/reactive powers. However, the control algorithm has a slow dynamic response because of utilisation of a PLL structure. In addition, additional complex mathematical computations are required with the use of a PLL algorithm. Furthermore, the interaction of the PLL and the power control loops may lead power oscillation problems under weak grid, and also result in instability of the PV system. In this study, to avoid the aforementioned issues and to enhance the power flow capability of the grid-connected PV panels, a PLL-less control algorithm in pq-theory is studied for the active/reactive power management and the grid synchronization. In addition, the mathematical formulations of the current control algorithm are presented in detail. To show the effectiveness of the PLL-less controller, a PV system model with using real PV panel groups is designed and constructed in a simulation environment. The proposed control method is tested under various operation cases such as dynamic environmental conditions, reactive power support and voltage variations. The proposed method shows efficient performance under applications of the different operation situations.\",\"PeriodicalId\":413929,\"journal\":{\"name\":\"European Journal of Technic\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Technic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36222/ejt.1129083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Technic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36222/ejt.1129083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在光伏电源与电网并网过程中,逆变系统主要用于光伏电源的有功/无功控制。传统变换器系统的控制算法由一个参考发电单元、一个直流电压控制环、两个功率控制环和一个锁相环系统组成。锁相环单元用于锁定电网的相角,并进行有功/无功功率计算的坐标变换。然而,由于采用锁相环结构,控制算法的动态响应较慢。此外,使用锁相环算法需要额外的复杂数学计算。此外,锁相环与功率控制环的相互作用可能导致弱电网下的功率振荡问题,也可能导致光伏系统的不稳定。为了避免上述问题,增强并网光伏板的潮流能力,本文研究了基于pq理论的无锁相环控制算法,用于有功/无功管理和并网同步。此外,还详细给出了当前控制算法的数学表达式。为了验证无锁相环控制器的有效性,在仿真环境中设计并构建了使用真实光伏板组的光伏系统模型。在动态环境条件、无功支持和电压变化等多种工况下对所提出的控制方法进行了测试。在不同的操作环境下,所提出的方法显示了有效的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PLL-Less Active/Reactive Power Control of Photovoltaic Energy Source with Applying pq-Theory in Single-Phase Grid System
Converter systems are applied to manage active/reactive power control of photovoltaic (PV) source during integration with the electric grid system. The control algorithm of the conventional converter system consists of a reference generation unit, a dc-link voltage control loop, two power control loops and a phase lock loop (PLL) system. PLL unit is used to lock in phase angle of the electric grid, and to perform the coordinate transformation for calculations of the active/reactive powers. However, the control algorithm has a slow dynamic response because of utilisation of a PLL structure. In addition, additional complex mathematical computations are required with the use of a PLL algorithm. Furthermore, the interaction of the PLL and the power control loops may lead power oscillation problems under weak grid, and also result in instability of the PV system. In this study, to avoid the aforementioned issues and to enhance the power flow capability of the grid-connected PV panels, a PLL-less control algorithm in pq-theory is studied for the active/reactive power management and the grid synchronization. In addition, the mathematical formulations of the current control algorithm are presented in detail. To show the effectiveness of the PLL-less controller, a PV system model with using real PV panel groups is designed and constructed in a simulation environment. The proposed control method is tested under various operation cases such as dynamic environmental conditions, reactive power support and voltage variations. The proposed method shows efficient performance under applications of the different operation situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信