局部描述子基于Fisher向量的遥感图像参数表征

Ronald Tombe, Serestina Viriri
{"title":"局部描述子基于Fisher向量的遥感图像参数表征","authors":"Ronald Tombe, Serestina Viriri","doi":"10.1109/ICTAS.2019.8703623","DOIUrl":null,"url":null,"abstract":"Satellite technology yield huge quantities of high spatial resolution(HSR) images periodically. The HSR type of data is complex in its spatial arrangement with high intraclass and low interclass variability. Remote sensing images scene classification is a challenging task due high inter and intra class variations due to diverse scene contents, induced noise as a resultant of changes in illuminations, differing scales and rotations of images. Consequently, no one-specific image descriptor algorithm is effective to characterize scene image-semantics for accurate classification. This research employ Fisher vector to characterize parameters of local descriptors i.e. Local Ternary Patterns (LBPs) and Hu Moments to a high fisher-vector-feature-representation that is more discriminative for remote sensing image scene classification. Support Vector Machine Classifier is implemented to validate the result. Overall results of 52.29 is achieved using the proposed strategy show a significant improvement compared to individual image descriptor algorithms in literature.","PeriodicalId":386209,"journal":{"name":"2019 Conference on Information Communications Technology and Society (ICTAS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Local Descriptors Parameter characterization with Fisher vectors for remote sensing images\",\"authors\":\"Ronald Tombe, Serestina Viriri\",\"doi\":\"10.1109/ICTAS.2019.8703623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite technology yield huge quantities of high spatial resolution(HSR) images periodically. The HSR type of data is complex in its spatial arrangement with high intraclass and low interclass variability. Remote sensing images scene classification is a challenging task due high inter and intra class variations due to diverse scene contents, induced noise as a resultant of changes in illuminations, differing scales and rotations of images. Consequently, no one-specific image descriptor algorithm is effective to characterize scene image-semantics for accurate classification. This research employ Fisher vector to characterize parameters of local descriptors i.e. Local Ternary Patterns (LBPs) and Hu Moments to a high fisher-vector-feature-representation that is more discriminative for remote sensing image scene classification. Support Vector Machine Classifier is implemented to validate the result. Overall results of 52.29 is achieved using the proposed strategy show a significant improvement compared to individual image descriptor algorithms in literature.\",\"PeriodicalId\":386209,\"journal\":{\"name\":\"2019 Conference on Information Communications Technology and Society (ICTAS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Information Communications Technology and Society (ICTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAS.2019.8703623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Information Communications Technology and Society (ICTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAS.2019.8703623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

卫星技术周期性地产生大量高空间分辨率(HSR)图像。高铁类型数据空间排列复杂,类内变异性高,类间变异性低。遥感图像场景分类是一项具有挑战性的任务,由于不同的场景内容、光照变化引起的噪声、图像的不同尺度和旋转导致的类间和类内变化很大。因此,没有一种特定的图像描述符算法能够有效地描述场景图像语义,从而实现准确的分类。本研究利用Fisher向量对局部描述符lbp和Hu矩的参数进行表征,得到了一种判别性更强的Fisher向量特征表示,用于遥感图像场景分类。采用支持向量机分类器对结果进行验证。与文献中单独的图像描述符算法相比,使用该策略获得的总体结果为52.29。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Descriptors Parameter characterization with Fisher vectors for remote sensing images
Satellite technology yield huge quantities of high spatial resolution(HSR) images periodically. The HSR type of data is complex in its spatial arrangement with high intraclass and low interclass variability. Remote sensing images scene classification is a challenging task due high inter and intra class variations due to diverse scene contents, induced noise as a resultant of changes in illuminations, differing scales and rotations of images. Consequently, no one-specific image descriptor algorithm is effective to characterize scene image-semantics for accurate classification. This research employ Fisher vector to characterize parameters of local descriptors i.e. Local Ternary Patterns (LBPs) and Hu Moments to a high fisher-vector-feature-representation that is more discriminative for remote sensing image scene classification. Support Vector Machine Classifier is implemented to validate the result. Overall results of 52.29 is achieved using the proposed strategy show a significant improvement compared to individual image descriptor algorithms in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信