Ioannis Mallioras, Z. Zaharis, P. Lazaridis, N. Kantartzis, T. Yioultsis, Bo Liu, Stavros Kalafatis
{"title":"NARX在天线阵列自适应波束形成中的新应用","authors":"Ioannis Mallioras, Z. Zaharis, P. Lazaridis, N. Kantartzis, T. Yioultsis, Bo Liu, Stavros Kalafatis","doi":"10.23919/AT-AP-RASC54737.2022.9814406","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the use of a nonlinear autoregressive network with exogenous inputs (NARX) for adaptive beamforming on smart antennas. As a beamformer, NARX receives the angles of arrival of incoming signals to extract the complex feeding weights that produce the appropriate antenna radiation pattern. In order to demonstrate the potential of such an implementation, we test our model on a realistic linear antenna array composed of 16 microstrip elements. We use the null steering beamforming technique to produce the datasets needed for training and testing of our model and then we evaluate the accuracy of the radiation patterns produced by this model. To further demonstrate the efficiency of the NARX implementation, we also make a comparison with a feed-forward neural network that has the same architecture with that of NARX.","PeriodicalId":356067,"journal":{"name":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","volume":"23 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Utilization of NARX for Antenna Array Adaptive Beamforming\",\"authors\":\"Ioannis Mallioras, Z. Zaharis, P. Lazaridis, N. Kantartzis, T. Yioultsis, Bo Liu, Stavros Kalafatis\",\"doi\":\"10.23919/AT-AP-RASC54737.2022.9814406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the use of a nonlinear autoregressive network with exogenous inputs (NARX) for adaptive beamforming on smart antennas. As a beamformer, NARX receives the angles of arrival of incoming signals to extract the complex feeding weights that produce the appropriate antenna radiation pattern. In order to demonstrate the potential of such an implementation, we test our model on a realistic linear antenna array composed of 16 microstrip elements. We use the null steering beamforming technique to produce the datasets needed for training and testing of our model and then we evaluate the accuracy of the radiation patterns produced by this model. To further demonstrate the efficiency of the NARX implementation, we also make a comparison with a feed-forward neural network that has the same architecture with that of NARX.\",\"PeriodicalId\":356067,\"journal\":{\"name\":\"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)\",\"volume\":\"23 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AT-AP-RASC54737.2022.9814406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AT-AP-RASC54737.2022.9814406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Utilization of NARX for Antenna Array Adaptive Beamforming
In this paper, we investigate the use of a nonlinear autoregressive network with exogenous inputs (NARX) for adaptive beamforming on smart antennas. As a beamformer, NARX receives the angles of arrival of incoming signals to extract the complex feeding weights that produce the appropriate antenna radiation pattern. In order to demonstrate the potential of such an implementation, we test our model on a realistic linear antenna array composed of 16 microstrip elements. We use the null steering beamforming technique to produce the datasets needed for training and testing of our model and then we evaluate the accuracy of the radiation patterns produced by this model. To further demonstrate the efficiency of the NARX implementation, we also make a comparison with a feed-forward neural network that has the same architecture with that of NARX.