大自然的错误准则是什么?

E. Guillemin
{"title":"大自然的错误准则是什么?","authors":"E. Guillemin","doi":"10.1109/TCT.1954.6373361","DOIUrl":null,"url":null,"abstract":"It is well known that the Fourier series is not the only trigonometric polynomial that may be used to represent a periodic function. It is a polynomial with the property that the mean square error between a partial sum and the given function is a minimum; that is to say, it approximates the given function so as to make the mean square error a minimum. This error criterion is only one of many that could be stipulated as fixing the manner in which the polynomial approximates the given function, and from a practical standpoint it isn't even a good one for many applications because it suffers from the Gibbs phenomenon. A Tschebyscheff-like approximation or the one inherent in the Cesaro sum which converges uniformly even at points of discontinuity may be preferable in many cases.","PeriodicalId":232856,"journal":{"name":"IRE Transactions on Circuit Theory","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1954-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"What is nature's error criterion?\",\"authors\":\"E. Guillemin\",\"doi\":\"10.1109/TCT.1954.6373361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the Fourier series is not the only trigonometric polynomial that may be used to represent a periodic function. It is a polynomial with the property that the mean square error between a partial sum and the given function is a minimum; that is to say, it approximates the given function so as to make the mean square error a minimum. This error criterion is only one of many that could be stipulated as fixing the manner in which the polynomial approximates the given function, and from a practical standpoint it isn't even a good one for many applications because it suffers from the Gibbs phenomenon. A Tschebyscheff-like approximation or the one inherent in the Cesaro sum which converges uniformly even at points of discontinuity may be preferable in many cases.\",\"PeriodicalId\":232856,\"journal\":{\"name\":\"IRE Transactions on Circuit Theory\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1954-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRE Transactions on Circuit Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCT.1954.6373361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRE Transactions on Circuit Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCT.1954.6373361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

众所周知,傅里叶级数并不是唯一可以用来表示周期函数的三角多项式。它是一个多项式,具有部分和与给定函数之间的均方误差最小的性质;也就是说,它近似给定的函数,使均方误差最小。这个误差标准只是许多可以用来确定多项式近似给定函数的方式的标准之一,从实际的角度来看,它甚至对许多应用来说都不是一个好标准,因为它受到吉布斯现象的影响。在许多情况下,切比舍夫近似或切萨罗和固有的近似甚至在不连续点上均匀收敛可能是更好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What is nature's error criterion?
It is well known that the Fourier series is not the only trigonometric polynomial that may be used to represent a periodic function. It is a polynomial with the property that the mean square error between a partial sum and the given function is a minimum; that is to say, it approximates the given function so as to make the mean square error a minimum. This error criterion is only one of many that could be stipulated as fixing the manner in which the polynomial approximates the given function, and from a practical standpoint it isn't even a good one for many applications because it suffers from the Gibbs phenomenon. A Tschebyscheff-like approximation or the one inherent in the Cesaro sum which converges uniformly even at points of discontinuity may be preferable in many cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信