稀疏距离多普勒图像的神经网络构建

J. Akhtar
{"title":"稀疏距离多普勒图像的神经网络构建","authors":"J. Akhtar","doi":"10.1109/RADAR42522.2020.9114808","DOIUrl":null,"url":null,"abstract":"The principles outlined by compressed sensing can permit a sensor to collect reduced amount of data and still reconstruct an exact outcome. This can for example be used to generate super-resolution sparse range-Doppler radar images while emitting a reduced number of pulses within a coherent processing interval. In this paper, we investigate the use of neural networks as a mean to solve the sparse reconstruction problem with specific emphasis towards range-Doppler images. The neural networks are trained to generate a sparse Doppler profile from incomplete time domain data in line with traditional sparse $L_{1}$-norm minimization. We show that this approach is viable through fully connected feed forwarding networks and the results closely mimic sparse recovered range-Doppler maps.","PeriodicalId":125006,"journal":{"name":"2020 IEEE International Radar Conference (RADAR)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse Range-Doppler Image Construction with Neural Networks\",\"authors\":\"J. Akhtar\",\"doi\":\"10.1109/RADAR42522.2020.9114808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principles outlined by compressed sensing can permit a sensor to collect reduced amount of data and still reconstruct an exact outcome. This can for example be used to generate super-resolution sparse range-Doppler radar images while emitting a reduced number of pulses within a coherent processing interval. In this paper, we investigate the use of neural networks as a mean to solve the sparse reconstruction problem with specific emphasis towards range-Doppler images. The neural networks are trained to generate a sparse Doppler profile from incomplete time domain data in line with traditional sparse $L_{1}$-norm minimization. We show that this approach is viable through fully connected feed forwarding networks and the results closely mimic sparse recovered range-Doppler maps.\",\"PeriodicalId\":125006,\"journal\":{\"name\":\"2020 IEEE International Radar Conference (RADAR)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Radar Conference (RADAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR42522.2020.9114808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Radar Conference (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR42522.2020.9114808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

压缩感知概述的原理可以允许传感器收集较少的数据,但仍然可以重建准确的结果。例如,这可以用于生成超分辨率稀疏距离多普勒雷达图像,同时在相干处理间隔内发射减少数量的脉冲。在本文中,我们研究了使用神经网络作为一种手段来解决稀疏重建问题,特别是对距离多普勒图像。训练神经网络根据传统的稀疏$L_{1}$范数最小化方法从不完全时域数据生成稀疏多普勒轮廓。我们表明,这种方法是可行的,通过完全连接的前馈网络和结果接近模拟稀疏恢复距离多普勒地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Range-Doppler Image Construction with Neural Networks
The principles outlined by compressed sensing can permit a sensor to collect reduced amount of data and still reconstruct an exact outcome. This can for example be used to generate super-resolution sparse range-Doppler radar images while emitting a reduced number of pulses within a coherent processing interval. In this paper, we investigate the use of neural networks as a mean to solve the sparse reconstruction problem with specific emphasis towards range-Doppler images. The neural networks are trained to generate a sparse Doppler profile from incomplete time domain data in line with traditional sparse $L_{1}$-norm minimization. We show that this approach is viable through fully connected feed forwarding networks and the results closely mimic sparse recovered range-Doppler maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信