下一个-在bb0上使用联邦学习的位置预测

S. M. D. Halim, L. Khan, B. Thuraisingham
{"title":"下一个-在bb0上使用联邦学习的位置预测","authors":"S. M. D. Halim, L. Khan, B. Thuraisingham","doi":"10.1109/CogMI50398.2020.00038","DOIUrl":null,"url":null,"abstract":"Mobile devices are a rich source of sensitive location data. In this paper, we propose a method for harnessing this data to provide better location predictions without sacrificing the privacy of the users generating this data. To this end, we propose utilizing Federated Learning to train locally on a user's mobile device, while simultaneously identifying and combatting the possibility of bad actors or adversaries that may deliberately report problematic data to hurt the training process. Furthermore, we propose using a blockchain instead of a centralized server for the training process, to ensure that the process is secure.","PeriodicalId":360326,"journal":{"name":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Next - Location Prediction Using Federated Learning on a Blockchain\",\"authors\":\"S. M. D. Halim, L. Khan, B. Thuraisingham\",\"doi\":\"10.1109/CogMI50398.2020.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile devices are a rich source of sensitive location data. In this paper, we propose a method for harnessing this data to provide better location predictions without sacrificing the privacy of the users generating this data. To this end, we propose utilizing Federated Learning to train locally on a user's mobile device, while simultaneously identifying and combatting the possibility of bad actors or adversaries that may deliberately report problematic data to hurt the training process. Furthermore, we propose using a blockchain instead of a centralized server for the training process, to ensure that the process is secure.\",\"PeriodicalId\":360326,\"journal\":{\"name\":\"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CogMI50398.2020.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI50398.2020.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

移动设备是敏感位置数据的丰富来源。在本文中,我们提出了一种方法来利用这些数据来提供更好的位置预测,而不会牺牲生成这些数据的用户的隐私。为此,我们建议利用联邦学习在用户的移动设备上进行本地训练,同时识别和打击可能故意报告有问题数据以破坏训练过程的不良行为者或对手的可能性。此外,我们建议使用区块链代替集中式服务器进行培训过程,以确保过程的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next - Location Prediction Using Federated Learning on a Blockchain
Mobile devices are a rich source of sensitive location data. In this paper, we propose a method for harnessing this data to provide better location predictions without sacrificing the privacy of the users generating this data. To this end, we propose utilizing Federated Learning to train locally on a user's mobile device, while simultaneously identifying and combatting the possibility of bad actors or adversaries that may deliberately report problematic data to hurt the training process. Furthermore, we propose using a blockchain instead of a centralized server for the training process, to ensure that the process is secure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信