{"title":"用于可扩展、低延迟数据中心网络的光机架内和机架间交换体系结构","authors":"G. Drainakis, P. Baziana, A. Bogris","doi":"10.1109/ISCC58397.2023.10217969","DOIUrl":null,"url":null,"abstract":"In this paper we propose a DC network (DCN) architecture that interconnects servers in the intra-rack and inter-rack domain, utilizing optical switching at each domain. The proposed interconnection techniques are studied as an intermediate step before migrating the entire DCN to all-optical schemes. Unlike other studies, we study the server-to-server communication across the whole DCN. For the performance evaluation we produce numerical results for throughput and end-to-end delay for three traffic classes co-existing in DCN s. The numerical analysis reveals that bandwidth utilization reaches 90% and 100% in the intra- and inter- domain respectively. Meanwhile, the maximum end-to-end delay for the highest priority packets under congested load is lower than 0.56 and 0.41 µs for the two examined intra-rack capacity scenarios of 400 and 600 Gbps respectively. A comparative study shows that our solution can effectively interconnect up to 10000 servers with lower environmental footprint and end-to-end delay than other DCN s.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Intra- and Inter-Rack Switching Architecture for Scalable, Low-Latency Data Center Networks\",\"authors\":\"G. Drainakis, P. Baziana, A. Bogris\",\"doi\":\"10.1109/ISCC58397.2023.10217969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a DC network (DCN) architecture that interconnects servers in the intra-rack and inter-rack domain, utilizing optical switching at each domain. The proposed interconnection techniques are studied as an intermediate step before migrating the entire DCN to all-optical schemes. Unlike other studies, we study the server-to-server communication across the whole DCN. For the performance evaluation we produce numerical results for throughput and end-to-end delay for three traffic classes co-existing in DCN s. The numerical analysis reveals that bandwidth utilization reaches 90% and 100% in the intra- and inter- domain respectively. Meanwhile, the maximum end-to-end delay for the highest priority packets under congested load is lower than 0.56 and 0.41 µs for the two examined intra-rack capacity scenarios of 400 and 600 Gbps respectively. A comparative study shows that our solution can effectively interconnect up to 10000 servers with lower environmental footprint and end-to-end delay than other DCN s.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10217969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10217969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical Intra- and Inter-Rack Switching Architecture for Scalable, Low-Latency Data Center Networks
In this paper we propose a DC network (DCN) architecture that interconnects servers in the intra-rack and inter-rack domain, utilizing optical switching at each domain. The proposed interconnection techniques are studied as an intermediate step before migrating the entire DCN to all-optical schemes. Unlike other studies, we study the server-to-server communication across the whole DCN. For the performance evaluation we produce numerical results for throughput and end-to-end delay for three traffic classes co-existing in DCN s. The numerical analysis reveals that bandwidth utilization reaches 90% and 100% in the intra- and inter- domain respectively. Meanwhile, the maximum end-to-end delay for the highest priority packets under congested load is lower than 0.56 and 0.41 µs for the two examined intra-rack capacity scenarios of 400 and 600 Gbps respectively. A comparative study shows that our solution can effectively interconnect up to 10000 servers with lower environmental footprint and end-to-end delay than other DCN s.