{"title":"基于粒子滤波和二值运动传感器网络的入侵者自动跟踪","authors":"J. Schiff, Ken Goldberg","doi":"10.1109/COASE.2006.326946","DOIUrl":null,"url":null,"abstract":"Our objective is to automatically track and capture photos of an intruder using a robotic pan-tilt-zoom camera. In this paper, we consider the problem of automated position estimation using a wireless network of inexpensive binary motion sensors. The challenge is to incorporate data from a network of noisy sensors that suffer from refractory periods during which they may be unresponsive. We propose an estimation method based on particle filtering, a numerical sequential Monte Carlo technique. We model sensors with conditional probability density functions and incorporate a probabilistic model of an intruder's state that utilizes velocity. We present simulation and experiments with passive infrared (PIR) motion sensors that suggest that our estimator is effective and degrades gracefully with increasing sensor refractory periods.","PeriodicalId":116108,"journal":{"name":"2006 IEEE International Conference on Automation Science and Engineering","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Automated Intruder Tracking using Particle Filtering and a Network of Binary Motion Sensors\",\"authors\":\"J. Schiff, Ken Goldberg\",\"doi\":\"10.1109/COASE.2006.326946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our objective is to automatically track and capture photos of an intruder using a robotic pan-tilt-zoom camera. In this paper, we consider the problem of automated position estimation using a wireless network of inexpensive binary motion sensors. The challenge is to incorporate data from a network of noisy sensors that suffer from refractory periods during which they may be unresponsive. We propose an estimation method based on particle filtering, a numerical sequential Monte Carlo technique. We model sensors with conditional probability density functions and incorporate a probabilistic model of an intruder's state that utilizes velocity. We present simulation and experiments with passive infrared (PIR) motion sensors that suggest that our estimator is effective and degrades gracefully with increasing sensor refractory periods.\",\"PeriodicalId\":116108,\"journal\":{\"name\":\"2006 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2006.326946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2006.326946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Intruder Tracking using Particle Filtering and a Network of Binary Motion Sensors
Our objective is to automatically track and capture photos of an intruder using a robotic pan-tilt-zoom camera. In this paper, we consider the problem of automated position estimation using a wireless network of inexpensive binary motion sensors. The challenge is to incorporate data from a network of noisy sensors that suffer from refractory periods during which they may be unresponsive. We propose an estimation method based on particle filtering, a numerical sequential Monte Carlo technique. We model sensors with conditional probability density functions and incorporate a probabilistic model of an intruder's state that utilizes velocity. We present simulation and experiments with passive infrared (PIR) motion sensors that suggest that our estimator is effective and degrades gracefully with increasing sensor refractory periods.