基于粒子滤波和二值运动传感器网络的入侵者自动跟踪

J. Schiff, Ken Goldberg
{"title":"基于粒子滤波和二值运动传感器网络的入侵者自动跟踪","authors":"J. Schiff, Ken Goldberg","doi":"10.1109/COASE.2006.326946","DOIUrl":null,"url":null,"abstract":"Our objective is to automatically track and capture photos of an intruder using a robotic pan-tilt-zoom camera. In this paper, we consider the problem of automated position estimation using a wireless network of inexpensive binary motion sensors. The challenge is to incorporate data from a network of noisy sensors that suffer from refractory periods during which they may be unresponsive. We propose an estimation method based on particle filtering, a numerical sequential Monte Carlo technique. We model sensors with conditional probability density functions and incorporate a probabilistic model of an intruder's state that utilizes velocity. We present simulation and experiments with passive infrared (PIR) motion sensors that suggest that our estimator is effective and degrades gracefully with increasing sensor refractory periods.","PeriodicalId":116108,"journal":{"name":"2006 IEEE International Conference on Automation Science and Engineering","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Automated Intruder Tracking using Particle Filtering and a Network of Binary Motion Sensors\",\"authors\":\"J. Schiff, Ken Goldberg\",\"doi\":\"10.1109/COASE.2006.326946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our objective is to automatically track and capture photos of an intruder using a robotic pan-tilt-zoom camera. In this paper, we consider the problem of automated position estimation using a wireless network of inexpensive binary motion sensors. The challenge is to incorporate data from a network of noisy sensors that suffer from refractory periods during which they may be unresponsive. We propose an estimation method based on particle filtering, a numerical sequential Monte Carlo technique. We model sensors with conditional probability density functions and incorporate a probabilistic model of an intruder's state that utilizes velocity. We present simulation and experiments with passive infrared (PIR) motion sensors that suggest that our estimator is effective and degrades gracefully with increasing sensor refractory periods.\",\"PeriodicalId\":116108,\"journal\":{\"name\":\"2006 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2006.326946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2006.326946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们的目标是自动追踪并捕捉入侵者的照片使用一个机器人平移变焦相机。在本文中,我们考虑了使用廉价的二值运动传感器无线网络的自动位置估计问题。挑战在于如何整合来自噪声传感器网络的数据,这些传感器在不应期可能会失去响应。我们提出了一种基于粒子滤波的估计方法,这是一种数值序列蒙特卡罗技术。我们用条件概率密度函数对传感器进行建模,并结合利用速度的入侵者状态的概率模型。我们提出了被动红外(PIR)运动传感器的仿真和实验,表明我们的估计器是有效的,并且随着传感器不应期的增加而优雅地退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Intruder Tracking using Particle Filtering and a Network of Binary Motion Sensors
Our objective is to automatically track and capture photos of an intruder using a robotic pan-tilt-zoom camera. In this paper, we consider the problem of automated position estimation using a wireless network of inexpensive binary motion sensors. The challenge is to incorporate data from a network of noisy sensors that suffer from refractory periods during which they may be unresponsive. We propose an estimation method based on particle filtering, a numerical sequential Monte Carlo technique. We model sensors with conditional probability density functions and incorporate a probabilistic model of an intruder's state that utilizes velocity. We present simulation and experiments with passive infrared (PIR) motion sensors that suggest that our estimator is effective and degrades gracefully with increasing sensor refractory periods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信